关于多/单特征输入,多/单步预测,到底是什么意思?一文讲明白!

本文详细解释了机器学习预测中的多变量输入(如温度、湿度、风速)与单步或多步预测的区别,通过电力负荷数据实例说明了不同类型的输入如何整理成适合模型训练的数据格式,包括单输入单输出、多输入单输出、多输入多输出等情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相信很多小伙伴都有这个疑问,到底什么是多变量输入,又怎么多步预测,一会又单步预测,绕来绕去,真的要搞蒙了!本期就来聊一聊到底何为多/单变量(特征)输入,多/单步预测。

在网上查阅关于“预测”这个话题的时候,很多文献说的不明所以,包括一些较好的期刊,甚至一些毕业论文这种需要码字的东西,都没讲清楚他们在做预测的时候,到底是怎么处理数据的。处理出来的数据,到底是个什么形式?怎么利用的数据特征,最后处理完的数据到底是个什么样子。

以下以一个电力负荷数据为例,介绍一下在做机器学习预测时,到底该如何整理这个数据。

数据形式一目了然,第一列是时间列,2-3列是特征列,最后一列是负荷值。

79bfbae4c06779bdcf8f22a24fbd7be3.png

首先说如果要建立一个机器学习预测模型,那么输出必然就是负荷值。

好,那么请问输入该是什么呢?以下以几个例子进行展示。这几个例子都可以使用!一般例1使用最多。

例1:多输入单输出。

以前2个时刻的所有数据(包含三个特征值温度/湿度/风速,与负荷)作为输入,以后1个时刻的负荷值作为输出。步长为1。

那整理完之后的数据为:

[0.74  0.8  0.23 750.75 0.74 0.87 0.15 716.94 712.77
0.74 0.87 0.15 716.94 0.74 0.87 0.15 712.77  684.86
0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79
0.74 0.8 0.15 684.86 0.74 0.8 0.15 728.79 742.81
…………………………循环下去…………………………]

如果步长为2,那么数据就变成:

[0.74 0.8 0.23 750.75  0.74  0.87 0.15 716.94 712.77
0.74 0.87  0.15 712.77  0.74 0.8 0.15 684.86 728.79
0.74 0.8 0.15 728.79 0.72  0.87 0.08 742.81 751.3
…………………………循环下去…………………………]

例2:多输入多输出。

以前2个时刻的所有数据(包含三个特征值温度/湿度/风速,与负荷)作为输入,以后2个时刻的负荷值作为输出。步长为1。

那整理完之后的数据为:

【0.74 0.8 0.23 750.75  0.74  0.87 0.15 716.94 712.77 684.86
 0.74 0.87 0.15 716.94 0.74 0.87  0.15 712.77  684.86 728.79
0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

注意:这里的例1和例2的多输入案例中,在将数据整理完了之后,并不是直接就能送入机器学习模型训练了。还要进行归一化操作和reshape变形,变成n行m列的矩阵后才能送进机器学习模型!

例3:单输入单输出。

如果是单输入单输出的话,证明只有一列数据。咱们这里就用最后一列负荷数据为例,进行介绍。

有一些文献也确实是这么做的,只用了负荷这一列的数据,而忽略天气等其他特征值。

提取出来负荷这一列数据:

[750.75 716.94 712.77 684.86 728.79 742.81 758.74 816.79 884.53 954.41………………]

以前5个时刻的所有数据作为输入,以后1个时刻的数据作为输出。步长为1。

整理完之后的数据为:

[750.75 716.94 712.77 684.86 728.79 742.81
716.94 712.77 684.86 728.79 742.81 758.74
712.77 684.86 728.79 742.81 758.74 816.79
684.86 728.79 742.81 758.74 816.79 884.53
728.79 742.81 758.74 816.79 884.53 954.41]

步长为2。整理完之后的数据为:

[750.75 716.94 712.77 684.86 728.79 742.81
712.77 684.86 728.79 742.81 758.74 816.79
728.79 742.81 758.74 816.79 884.53 954.41]

例4:单输入多输出。

依旧是以符合数据为例进行介绍。

以前5个时刻的所有数据作为输入,以后2个时刻的数据作为输出。步长为1。

整理完之后的数据为:

[750.75 716.94 712.77 684.86 728.79 742.81 758.74
716.94 712.77 684.86 728.79 742.81 758.74 816.79
712.77 684.86 728.79 742.81 758.74 816.79 884.53
684.86 728.79 742.81 758.74 816.79 884.53 954.41]

好啦,讲到这里想必大家就全都明白了!留个小赞吧~❤

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

淘个代码_

不想刀我的可以选择爱我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值