解析函数的幂级数理论【无穷级数收敛性】

解析函数的幂级数理论【无穷级数收敛性】

级数也是研究函数的一个重要工具,无穷级数,特别是幂级数,是解析函数的重要表达形式之一。许多初等函数和特殊函数都是用幂级数定义的。

级数收敛性

给定复数级数
∑ n = 0 ∞ u n = u 0 + u 1 + u 2 + ⋯ \sum_{n=0}^{\infty} u_{n}=u_{0}+u_{1}+u_{2}+\cdots n=0un=u0+u1+u2+
如果它的部分和
S n = u 0 + u 1 + u 2 + ⋯ + u n S_{n}=u_{0}+u_{1}+u_{2}+\cdots+u_{n} Sn=u0+u1+u2++un
所构成的序列 { S n } \left\{S_{n}\right\} { Sn} 收敛,则称级数 ∑ u n \sum u_{n} un 收敛,而序列 { S n } \left\{S_{n}\right\} { Sn} 的极限 S = lim ⁡ n → ∞ S n S=\lim _{n \rightarrow \infty} S_{n} S=limnSn,称为级数 ∑ u n \sum u_{n} un 的和;否则,级数 ∑ u n \sum u_{n} un 是发散的。复数项级数 ∑ k = 0 ∞ f k \sum_{k=0}^{\infty} f_{k} k=0fk可以归结为两个实数项级数的和。
∑ k = 0 ∞ f k = ∑ k = 0 ∞ u k + i ∑ k = 0 ∞ v k ⟶  收敛于  F = u + i v \sum_{k=0}^{\infty} f_{k}=\sum_{k=0}^{\infty} u_{k}+i \sum_{k=0}^{\infty} v_{k} \stackrel{\text { 收敛于 }}{\longrightarrow} F=u+i v k=0fk=k=0uk+ik=0vk 收敛于 F=u+iv
如果级数 ∑ n = 0 ∞ ∣ u n ∣ \sum_{n=0}^{\infty}\left|u_{n}\right| n=0un 收敛,则称级数

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

力语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值