Python模块Pandas数据切片 -- 详解loc和iloc区别

        在Pandas库中,`iloc`和`loc`是用于选择DataFrame或Series中数据的两种主要方法。尽管它们的目的相似,但它们的用法和基于的索引类型有着显著的区别。以下是`iloc`和`loc`之间的主要区别:

目录

 1. 基于的索引类型

 2. 使用场景

3. 示例

3.1 使用`loc`

3.2 使用`iloc`

4. 切片

5. 布尔索引

 1. 基于的索引类型

  • `loc`:基于标签的索引。它使用DataFrame或Series的轴标签来选择数据。对于DataFrame,这意味着使用行索引(index)和列标签(columns)来选择数据;
  • `iloc`:基于整数位置的索引。它使用基于0的整数位置来选择数据。对于DataFrame,这意味着使用行号和列号来选择数据。

 2. 使用场景

  • 如果知道要选择的数据的确切标签(例如,特定的行索引或列名),那么`loc`是一个很好的选择;
  • 如果知道要选择的数据在DataFrame或Series中的位置(例如,想要选择前两行或第三列),那么`iloc`是更好的选择。

3. 示例

3.1 使用`loc`

import pandas as pd

# 创建一个简单的DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)

# 使用loc选择标签为'Bob'的行
row_bob = df.loc[df.index == 'Bob']  # 注意:通常DataFrame的行索引不是字符串,这里仅为示例
print(row_bob)

# 使用loc选择'Age'列
age_column = df.loc[:, 'Age']
print(age_column)

# 使用loc选择标签为'Bob'的行和'Age'列
bob_age = df.loc[df.index == 'Bob', 'Age']
print(bob_age)

3.2 使用`iloc`

# 使用iloc选择前两行
first_two_rows = df.iloc[:2]
print(first_two_rows)

# 使用iloc选择第三列(注意:Python的索引是从0开始的)
third_column = df.iloc[:, 2]  # 这会抛出错误,因为只有两列,但展示了iloc的语法
print(third_column)  # 如果DataFrame有三列或更多,这将正常工作

# 使用iloc选择第一行和第二列(即'Age'列)的数据
first_row_second_column = df.iloc[0, 1]
print(first_row_second_column)  # 输出:25

4. 切片

  • `loc`可以使用标签切片来选择数据,但通常不如直接指定标签列表来得直接和直观;
  • `iloc`使用基于整数位置的切片来选择数据,这在处理连续范围的数据时非常有用。

5. 布尔索引

        两者都可以使用布尔索引来选择满足特定条件的行。但是提供的布尔条件应该与所使用的索引类型相匹配(即,使用`loc`时条件应基于标签,使用`iloc`时条件应基于位置)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值