特征提取的一种方法—对称不确定性

对称不确定性 (Symmetrical Uncertainty, SU),是用于衡量两个变量之间关联度的一个常用指标。它在特征选择算法中很常见,用来确定哪些变量包含有意义的信息。其公式如下:

其中:

  • I(X,Y)I(X, Y)I(X,Y):互信息,表示两个随机变量 XXX 和 YYY 之间的信息共享程度
  • H(X)和 H(Y):分别是 X和 Y的信息熵,表示每个变量的不确定性。

他们的计算公式如下:

对于S(X,Y)有如下信息:

   对称不确定性是基于互信息的一个归一化指标,确保其取值范围在 [0,1][0, 1][0,1] 之间。

  • 如果 S(X,Y)=0S(X, Y) = 0S(X,Y)=0,则说明 X 和 Y完全不相关。
  • 如果 S(X,Y)=1S(X, Y) = 1S(X,Y)=1,则表示 X 和 Y 完全依赖。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值