连续随机变量分布

一、均匀分布

二、指数分布

设X为随机变量,概率密度函数(见图2.5(a))为

f(x)=\left\{\begin{matrix} \lambda e^{-\lambda x}, &x\geq 0, \\ 0,& other .\end{matrix}\right. \lambda > 0

则称随机变量X服从参数为λ的指数分布,记为X~E(λ).

若X~E(λ),则相应的分布函数(见图2.5(b))为

F(x)=\left\{\begin{matrix} 1- e^{-\lambda x}, &x\geq 0, \\ 0,& other .\end{matrix}\right. \lambda > 0

由此得到,若X~E(λ),0<a<b,则P(a<X≤b)=F(b)-F(a)=e^{-\lambda a} -e^{-\lambda b}

服从指数分布的随机变量只能取非负实数,它常被用作各种“寿命”分布,如电子元件的寿命、随机服务系统中的服务时间等都可以假定服从指数分布.指数分布在可靠性与排队论中有着广泛的应用.同样,指数分布同几何分布相似,也具有无记忆性。

三、正态分布

设X为随机变量,概率密度函数为

f(x)=\frac{1}{\sqrt{2\pi }\delta }e^{-\frac{(t-\mu )^2}{2\delta^2},-\infty <x<\infty

则称随机变量X服从参数为μ(-∞<μ<+∞)和σ2(σ>0)的正态分布,记为X~N(μ,σ2).若X~N(μ,σ2),则相应的分布函数为

 F(x)=\int_{-\infty }^{x}\frac{1}{\sqrt{2\pi }\delta }e^{-\frac{(t-\mu )^2}{2\delta^2}}\mathrm{d}t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值