机器学习典型步骤以及训练集、验证集和测试集概念

1. 机器学习典型步骤

  1. 数据采集和标记

  2. 数据清洗

  3. 特征选择

    如房子的面积、地理位置、朝向、价格等。

  4. 模型选择

有监督还是无监督,问题领域、数据量大小、训练时长、模型准确度等多方面有关。

  1. 模型训练和测试

    把数据集分成训练数据集和测试数据集,一般按照 8:2 或 7: 3 来划分,然后用训练数据集来训练模型。训练出参数后再使用测试数据集来测试模型的准确度。

  2. 模型评估和优化

    准确性和性能多方面进行评估和优化

  3. 模型使用

    训练出来的模型可以把参数保存起来,下次使用时直接加载即可。一般来讲,模型训练需要的计算量是很大的,也需要较长的时间来训练,这是因为一个好的模型参数,需要对大型数据集进行训练后才能得到。

    而真正使用模型时,其计算量是比较少的,一般是直接把新样本作为输入, 然后调用模型即可得出预测结果。

2. 训练集、验证集和测试集概念

  • 训练集(Train Set):

用来做训练的数据的集合。

  • 验证集(ValidationSet):

在训练的过程中,每个训练轮次结束后用来验证当前模型性能,为进一步优化模型提供参考的数据的集合。

  • 测试集(Test Set):

用来测试的数据的集合,用于检验最终得出的模型的性能。

在个别情况下验证集和测试集可以合二为一,不过当然最好还是分开。验证可以理解为一个小规模的对于已经生成模型的测试,只不过已生成模型处理的数据不是测试集而是验证集。

这三个集合可以从同一份标注数据中随机选取。三者的比例可以是训练集:验证集:测试集=2:1:1,也可以是7:1:2。总之,训练集占大头。有些情况下(整体数据量不大,模型又相对简单时),验证集和测试集也可以合二为一。

### 机器学习训练集测试集验证集的区别及用途 #### 训练集 (Training Set) 训练集是用于训练模型的数据子集。模型通过学习训练集中数据及其对应的标签来调整参数并学习其中的模式与特征,从而具备预测或分类的能力[^2]。 ```python from sklearn.model_selection import train_test_split # 假设X为特征矩阵,y为目标变量 X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.4, random_state=42) ``` #### 验证集 (Validation Set) 验证集是从原始数据中分离出来的一部分样本集合,在整个建模周期里用来优化算法配置即超参数的选择。这有助于避免过拟合并提高模型对于未曾见过的数据的良好适应性。当涉及到诸如神经网络架构设计时,验证误差指导着结构复杂度的最佳设定[^1]。 ```python # 继续上面的例子,X_temp y_temp 进一步拆分为验证集测试集 X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42) ``` #### 测试集 (Test Set) 测试集是在完成所有训练调优活动之后才被利用的一组实例;其主要功能在于提供一个公正无偏倚的方式去测量已开发系统的效能指标,特别是关注于泛化错误率方面。这意味着该部分资料应该尽可能保持未受任何先前处理步骤影响的状态直至最后阶段[^3]。 ```python # 使用测试集评估模型性能 model.score(X_test, y_test) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wohu007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值