cvhistgram

直方图数据结构:

typedef struct CvHistogram

{
    int     type;
    CvArr*  bins;
    float   thresh[CV_MAX_DIM][2];  /* For uniform histograms.                      */
    float** thresh2;                /* For non-uniform histograms.                  */
    CvMatND mat;                    /* Embedded matrix header for array histograms. */
}

CvHistogram;

直方图内部很多内部数据存储在mat中

创建新的直方图:

CVAPI(CvHistogram*)  cvCreateHist( int dims, int* sizes, int type, float** ranges CV_DEFAULT(NULL), int uniform CV_DEFAULT(1));

dims直方图的维数,sizes维数的bins的总数,数组的维数和dims相同,ranges每一个bins的分割,uniform = 1表示均匀分布

计算直方图:

CV_INLINE  void  cvCalcHist( IplImage** image, CvHistogram* hist,int accumulate CV_DEFAULT(0),const CvArr* mask CV_DEFAULT(NULL) )

image为原图像的指针数组,多通道图像要分解为单通道图像,在组合成数组,就可以生成多通道直方图;

获取hist中的数据

cvQueryHistValue_1D 为宏定义

#include 
   
   
    
    
#include 
    
    
     
     
#include 
     
     
      
      
#include 
      
      
       
       


using namespace cv;


int main()
{
	IplImage *img = cvLoadImage("lena.jpg");
	IplImage *dst = cvCreateImage(cvSize(img->width,img->height),img->depth,img->nChannels);
	IplImage *b_plane = cvCreateImage(cvSize(img->width,img->height),IPL_DEPTH_8U,1);
	IplImage *g_plane = cvCreateImage(cvSize(img->width,img->height),IPL_DEPTH_8U,1);
	IplImage *r_plane = cvCreateImage(cvSize(img->width,img->height),IPL_DEPTH_8U,1);

	cvSplit(img,b_plane,g_plane,r_plane,NULL);
	int size[] = {100};
	float range[] = {0,255};
	float *ranges[] = {range};
	CvHistogram *hist = cvCreateHist(1,size,CV_HIST_ARRAY,ranges,1);
	cvCalcHist(&b_plane,hist);
	float max_value = 0;
	float min_value = 0;
	cvGetMinMaxHistValue(hist,&min_value,&max_value);
	IplImage *hist_img = cvCreateImage(cvSize(100*10,500),IPL_DEPTH_8U,1);
	hist_img->origin = 1;	//原点设为右下
	cvZero(hist_img);
	for (int i = 0; i<100;i++)
	{
		float bin_val = cvQueryHistValue_1D(hist,i);
		//float bin_val = *(hist->mat.data.fl + i);
		cvRectangle(hist_img,cvPoint(i*10,cvRound(bin_val*500/max_value)),cvPoint((i+1)*10,0),cvScalar(255),CV_FILLED);
	}
	
	cvNamedWindow("lena");
	cvShowImage("lena",hist_img);
	cvWaitKey(0);
	cvReleaseImage(&img);
	cvReleaseImage(&dst);
	cvDestroyWindow("lena");

}

      
      
     
     
    
    
   
   



内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值