【sklearn第二十七讲】模型持久性

本文介绍了如何使用Python的pickle或joblib持久化scikit-learn模型,提供了一个持久化模型的例子,并强调了pickle在安全性和可维护性上的限制,包括避免unpickle不可信数据和保持scikit-learn版本一致性的重要性。
摘要由CSDN通过智能技术生成

机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)

在训练了一个scikit-learn模型后,如果想持久化这个模型以便将来使用怎么办呢?下面以一个例子介绍怎样使用pickle持久化一个模型。

持久化例子

使用Python内置的持久化模型pickle, 能够在scikit里保存一个模型。
这里写图片描述

在特定的情况下,可以使用pickle的joblib替代(joblib.dump & joblib.load),它对于加载大numpy数组的对象的执行效率更高。

from sklearn.externals import joblib
joblib.dump(clf, 'filename.pkl') 

以后,你可以在另一个Python进程加载回这个pickle模型

clf = joblib.load('filename.pkl') 

安全性与可维护限制

pickle在安全性与可维护性方面有一些问题。

  • 不要unpickle不可信的数据,因为这可能导致加载恶意代码。

  • 当使用某个版本的scikit-learn保存模型,而使用另一个版本的scikit-learn加载模型&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值