点击蓝字
关注我们
导读人:林丽敏、朱琪、王凌琴
校稿人:汤默然、鞠峰
抗生素作为临床药物的广泛使用,增加了抗生素残留物向自然生态系统的释放。这不仅加剧了抗生素对环境的污染,同时促进了抗生素抗性基因(ARGs)的增殖与传播。抗生素的胁迫可通过质粒、转座子和整合子等移动遗传元件(MGEs)促进细菌和病原体之间ARGs的水平基因转移(HGT),进而增加环境中的生态和人类健康风险。近年来,抗生素在地下水中被频繁检出。地下水作为重要的饮用水源,其中的抗生素污染是否或如何影响地下水抗生素耐药组(即所有ARGs)的丰度与组成仍待探究。同时,高盐度地下水在自然界中广泛存在,然而我们对生物及非生物因素如何影响抗生素污染的含盐地下水中ARGs的增殖仍知之甚少。
日前,北京大学环境科学与工程学院孙卫玲课题组与西湖大学工学院/西湖实验室鞠峰课题组开展合作研究,系统地探究了三个盐度梯度的地下水中ARGs、MGEs和微生物组的存在模式,并进一步探讨了生物和非生物因素在塑造含盐地下水ARGs模式中的作用。这些发现为盐度、抗生素等因素如何影响含盐地下水中的ARGs提供了新见解,为管理含盐地下水的抗菌剂提供了重要的认识。此项研究以“Exploring diversity patterns and driving mechanisms of the antibiotic resistome and microbiome in saline groundwater”[1]为题发表于环境领域国际期刊《Journal of Hazardous Materials》,北京大学环境科学与工程学院博士研究生汤默然与陈倩高级工程师为共同第一作者,西湖大学工学院/西湖实验室鞠峰教授与北京大学环境科学与工程学院孙卫玲教授为共同通讯作者。本研究得到了国家自然科学基金杰出青年基金、青海省自然科学基金和国家水体污染控制与治理科技重大专项的资助。
地下水盐度梯度下的抗生素和环境变量
根据盐度水平,地下水可分为四类:淡水(FW)、苦咸水(BW)、中度盐水(MSW)以及高盐水,分别对应于TDS浓度范围:<1000 mg/L、1000-3000 mg/L、3000-10000 mg/L以及>10000 mg/L。本研究选取的研究区域位于中国河北省白洋淀上游及唐河下游。该区域地下水受到污水库工业固体废物和工业废水的影响,研究水样的TDS的浓度范围为93.9-8855 mg/L,其中37.8%和29.3%的地下水样本分别属于BW和MSW类别。研究团队分别于2019年6月(丰水期)和2019年12月(枯水期)于39口监测井进行地下水现场采样。
图1. 采样地点。
图2. 含盐地下水环境变量和抗生素浓度情况。
包括SO42-、硬度、Na、Cl、高锰酸盐指数(CODMn)和十种金属(Mg、Ca、K、Fe、Mn、Li、Cu、Ni、Ti和Co)在内的环境变量浓度随着盐度的增加而显著增加,表明这些污染物具有同源性。从83种目标抗生素中共检测到39种(FW30种,BW33种,MSW26种)。BW中抗生素的总浓度为3.89-466 ng/L,显著高于FW(1.10-161 ng/L)和MSW(0-135 ng/L)(p<0.05)。其中,磺胺类抗生素的检出浓度最高,在FW、BW和MSW中的检出浓度分别为未检出(ND)-114 ng/L、ND-384 ng/L和ND-59.5 ng/L。
此外,由于丰水期的地表径流中含有多种污染物,能够将抗生素和其他污染物输送到地下水中,因此抗生素总浓度与总有机碳(TOC)、钾(K)、总磷(TP)和铁(Fe)、锰(Mn)、钡(Ba)、铬(Cr)以及钴(Co)的浓度在丰水期显著高于枯水期(p<0.05)。
含盐地下水抗生素抗性基因(ARGs)、可移动基因组(MGE)和微生物的多样性和组成
本研究基于66个地下水样品宏基因组的从头组装,预测了242,140个ORF,其中7990个被注释为ARG,包含16种类型(166个亚型)的ARG。此外,还检测到包含382个亚型的6种MGE类型。ARGs的总丰度在FW中为0.005-0.251拷贝/细胞,在BW中为0.003-0.181拷贝/细胞,在MSW中为0.003-0.306拷贝/细胞。杆菌肽ARGs在地下水中表现出最高丰度(ND至0.298拷贝/细胞),且丰度随着盐度的增加而显著增加。MGEs的丰度在盐度梯度之间没有显著差异,但MSW中的MGE多样性明显高于FW。
地下水微生物群可作为ARG和MGE的宿主来塑造抗生素抗性结构。在地下水样本中鉴定出微生物总共62个门,广泛分布在1330个属中。三种盐度条件下的香农多样性指数(p>0.05)没有显著差异。然而,高盐度显著增加了部分属的相对丰度(p<0.05),包括假单胞菌属、黄杆菌属、脱硫孢菌属和脱硫单胞菌属等耐盐菌株。
地下水ARGs的生物和非生物驱动因素
基于偏最小二乘路径模型分析了多种生物和非生物因素对地下水中ARGs丰度和组成的影响,共同解释了57%的ARGs总丰度和61%的ARGs组成。微生物β多样性是直接影响ARGs丰度的主要因素,而MGEs显著影响ARGs组成。环境变量通过影响微生物群β多样性对ARGs丰度表现出显著的间接影响,同时直接影响ARGs组成。
本研究采用随机森林模型进一步揭示特定变量对ARGs丰度和组成的贡献度排序。环境变量解释了36.8%的微生物β多样性变量。CODMn是主要影响因子,其次是Co、K、TDS和SO42-。磺胺类抗生素作为检出浓度最高的抗生素,对ARGs组成的重要性最高。另一方面,82.8%的ARG组成可用MGE解释。微生物类群阐述了52.0%的ARG丰度变量。Rheinheimera、Aeromonas、Cellvibrio和Simplicispira是前四名的贡献者。
进一步的网络分析比较发现ARGs与MEGs和微生物组的相互关联随着盐度增加而减少。同样,ARGs在FW和BW中比在MSW中更倾向于与Proteobacteria共同出现,表明ARGs和Proteobacteria之间的非随机相互作用可能与地下水盐度有关。基于模块化共现网络分析,每个网络被解析为九个主要模块。网络节点总数随着盐度增加而减少,而簇或群落的数量随着盐度的增加而增加,表明整体而言微生物生态位的多样性增加,而组成复杂性随着盐度的增加而降低。在MSW中观察到微生物组和ARGs之间的显著相关性,表明由微生物群介导的垂直遗传转移(VGT)可能是中等盐度条件下ARGs组成的关键驱动因素之一。
图3. 抗生素耐药组中ARG丰度和组成的决定性生物和非生物驱动因素。
图4. FW、BW 和 MSW 中ARG 亚型、MGE 亚型和微生物属的共现网络 (a-c) 和模块化网络 (d-f)。
图5. 基于FW、BW和MSW中的ARGs与MGE(a-c)、微生物组 (d-f) 之间相关性Bray-Curtis相异矩阵的普式(Procrustes)分析。
ARGs的宿主和移动潜力
为进一步鉴定ARG宿主,从所有样本中重建了2,675个宏基因组组装基因组(metagenome-assembled genomes, MAG),361个MAGs被成功分配到13个门和56个属。地下水中ARG宿主的组成随盐度梯度发生显著变化。在FW中的优势宿主为:Rhodoferax(相对丰度24.6%)和Gallionella(12.7%);在BW中,优势宿主为:Gallionella(29.8%)和Ramlibacter(17.4%),而Gallionella属(57.2%)在MSW中占主导地位。三种盐度条件下的常见宿主属均为Rhodoferax、Gallionella和Pseudomonas,这可能是由于地下水体间的相互连通。
图6. 携带ARG的MAGs在属水平的注释信息(a-c),ARGs和MGEs在contigs上的代表性排列(d),以及ARGs在不同盐度地下水中的可移动性发生率(e)。
作者通过计算三个盐度梯度下地下水的“可移动性发生率”(mobility incidence)[2]发现ARGs的可转移潜力在盐度相对较高的地下水中显著降低。此外,磺胺类ARGs在不同类型的ARGs中表现出最高的迁移率,这可能是由于磺胺类抗生素在地下水中占主导地位。此外,HGT和VGT可能对ARGs在不同盐度地下水中的传播有不同的影响。结果突出了抗生素和盐度在共同塑造抗生素耐药性以及ARGs的可转移潜力方面的重要作用。
该研究阐述了非生物因素(包括盐度和抗生素)在共同塑造地下水ARGs、微生物群和MGEs结构方面的相对贡献,强调了特定环境因素在ARGs在地下水中传播的重要性。
参考文献:
[1] Moran Tang, Qian Chen, Haohui Zhong, Feng Ju *, Yang Wu, Jingrun Hu, Si Li , Weiling Sun*. 2023. Exploring diversity patterns and driving mechanisms of the antibiotic resistome and microbiome in saline groundwater. Journal of Hazardous Materials. 446, 130734
[2] Ju F, Beck K, Yin X, McArdell Christa, Singer H, Johnson D, Zhang T, Buergmann H*. 2019. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange and up-regulated expression in the effluent. The ISME Journal. 13 (2), 346:1
END
通讯作者
孙卫玲
北京大学
孙卫玲,北京大学博雅特聘教授、博士生导师,国家杰出青年基金获得者。主要从事水体中新污染物迁移转化及生态效应的研究。主持和参与多项国家自然科学基金、国家重点研发计划、国家水体污染控制与治理科技重大专项,以及中欧、中日和中韩国际合作项目。发表论文140余篇,相关成果入选2020生态环境十大科技进展,曾获国家技术发明奖二等奖、教育部科技进步一等奖。国际水利与环境工程学会(IAHR)全球水安全委员会委员、全球水安全工作组领导成员(Leadership member)。
鞠峰
西湖大学
鞠峰,西湖大学特聘研究员、博士生导师,浙江省杰出青年基金获得者,从事环境微生物组学与生物技术研究。现任工学院 PI,西湖实验室(生命科学与生物医学浙江省实验室)PI,兼聘生命科学学院 (招生方向:生物学),曾获中国生态学会“水云天微生物生态青年科技创新奖-特等奖”(2018)、香港科学会“青年科学家奖”(2016)等奖项。近五年主持或参与国家级或省部级科研项目5项,参编中英文专著 5 本,在Nature Communications、ISME Journal (4 篇)、Advanced Science (2篇)、Microbiome (2篇)、Environmental Science & Technology (11 篇)、Water Research (9 篇) 等知名期刊发表SCI论文70余篇,引用4400余次。目前担任浙江省海岸带环境与资源研究重点实验室副主任、浙江省生物信息学会微生物组学专业委员会委员,Frontiers in Microbiology副主编,中国工程院院刊 Engineering、Engineering in Life Sciences 等 SCI 期刊编委,The Innovation 学术编辑,以及 CREST、JES、ESE、iMeta 等学术期刊青年编委。
EMBLab Github 主页链接:https://github.com/emblab-westlake。
ARGfams 的报道链接:ARGfams: 一种适用于环境样本抗生素抗性基因快速注释与新基因发现的工具与数据库资源
抗生素抗性的表型宏基因组方法:西湖大学工学院鞠峰团队最新成果——提出表型宏基因组学方法,用于超广谱抗生素耐药组的高通量环境检测
基于基因组水平分辨率的绝对定量宏转录组学方法:西湖大学工学院鞠峰实验室于环境领域顶刊ES&T发表最新研究成果
新年快乐
Happy New Year
微信号|envmbio
实验室网站|http://www.ju-emblab.com
猜你喜欢
iMeta简介 高引文章 高颜值绘图imageGP 网络分析iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测
10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature
一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索 Endnote
16S功能预测 PICRUSt FAPROTAX Bugbase Tax4Fun
生物科普: 肠道细菌 人体上的生命 生命大跃进 细胞暗战 人体奥秘
写在后面
为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。
点击阅读原文