近日,国外学者Pieter C. Dorrestein以通讯作者在《Nature Microbiology》上发表论文microbeMASST: a taxonomically informed mass spectrometry search tool for microbial metabolomics data(Q1,IF=28.3),该文章介绍了一种分类学信息质谱(MS)搜索工具,可解决非靶向代谢组学实验中有限的微生物代谢物注释问题。利用包含 >60,000 种微生物单一培养物的精选数据库,用户可以搜索已知和未知的 MS/MS 谱图,并通过 MS/MS 片段化模式将它们与各自的微生物生产者联系起来。在没有经验知识的情况下鉴定微生物衍生的代谢物和相关生产者将大大增强对微生物在生态学和人类健康中的作用的理解,值得关注。
方法背景
微生物推动全球碳循环并能与宿主生物建立共生关系,影响它们的健康、衰老和行为。微生物种群通过改变可用的代谢物库和产生专门的小分子与不同的生态系统相互作用。这些群落的巨大遗传潜力以人类相关微生物为例,它们编码的基因是人类基因组的 ~100 倍。然而,这种代谢潜力在现代非靶向代谢组学实验中仍未得到反映,其中通常<1%的注释分子可以归类为微生物。这个问题尤其影响基于质谱(MS)的非靶向代谢组学,这是一种研究微生物产生或修饰的分子的常用技术。这在复杂生物样品的光谱注释方面遇到了困难。这是因为大多数光谱参考库偏向于市售或以其他方式可获取的初级代谢物、药物或工业化学品标准品。即使对代谢物进行了注释,也需要进行广泛的文献检索,以了解这些分子是否具有微生物来源并确定各自的微生物生产者。公共数据库,例如 KEGG、MiMeDB数据库、NPAtlas和 LOTUS,可以帮助这种解释,但它们大多局限于成熟的、主要是基因组推断的代谢模型或完全表征和发表的分子结构。此外,虽然已经开发了旨在从机制上询问肠道微生物组的靶向代谢组学工作,这些只关注相对较少的市售分子。因此,尽管MS参比文库不断扩展,但大多数微生物化学空间仍然未知。为了填补这一空白,该团队开发了microbeMASST(https://masst.gnps2.org/microbemasst/),这是一种搜索工具,它利用公共MS存储库数据来识别已知和未知代谢物的微生物来源,并将其映射到其微生物生产者。
如何使用?
1. microbeMASST是一种社区来源的工具,可在GNPS生态系统中工作;
2.用户可以根据GNPS/MassIVE存储库搜索从实验中获得的串联MS(MS/MS)谱图,并检索仅从细菌、真菌或古细菌单一培养物提取物中获取的匹配样品。
3. 所有可用的微生物都已根据NCBI分类法进行分类,如果在创建数据库时没有可用的 NCBI ID,则以不同的分类分辨率(即物种、属、科等)或映射到最接近的分类准确级别。
4. 截至 2023 年 9 月,microbeMASST 包括 60,781 个液相色谱(LC)–MS/MS 文件,包括 >1 亿个 MS/MS 谱图,映射到 541 个菌株、1,336 种、539 属、264 科、109 目、41 纲和 16 门,来自三个生命领域:细菌、古细菌和真核生物。(图1)
5. 用户可以通过提供格式化的 MS/MS 文件(.mgf)或通用光谱标识符(USI)列表,利用 microbeMASST Python 代码对数千个 MS/MS 谱图进行批量搜索。
应用领域?
1. 使用网络界面研究单个 MS/MS 谱图,如果之前在 microbeMASST 数据库中存在的任何微生物单一培养物中观察到已知或未知的 MS/MS 谱图,则获得匹配结果;
2. 在MS研究中利用microbeMASST来挖掘已知或未知的微生物代谢物;
3. 对着GNPS公共资料库对512个MS/MS谱图进行批量搜索,观察它们是否在人类数据集中被检测到。然后使用与人类数据集相关的 ReDU 元数据信息来观察 MS/MS 光谱在不同疾病和身体部位的分布。
图1. microbeMASST搜索工具和参考数据库。
图2. microbeMASST可以识别小鼠和人类数据集中的微生物MS/MS谱图。
作者简介
加州大学圣地亚哥分校斯卡格斯药学与制药科学学院合作质谱创新中心Pieter C. Dorrestein教授,旨在开发新的基于质谱的方法来理解微生物的化学,微生物组和它们的生态位。简而言之,该团队开发了可以在细胞间转换化学语言的工具。这项研究需要了解(微生物)基因组学、蛋白质组学、成像质谱、基因组挖掘、酶学、小分子结构阐明、生物活性筛选、抗生素耐药性和了解小分子结构阐明方法。