TSP_旅行商问题-基本蚁群算法

本文介绍了使用基本蚁群算法解决旅行商问题(TSP),详细阐述了算法流程,包括蚂蚁的随机选择起点、根据信息素选择路径等步骤,并探讨了不同信息素更新模型。此外,还设置了算法参数,如最大迭代周期、蚂蚁数量和信息素衰退因子,并给出了测试结果。
摘要由CSDN通过智能技术生成

TSP_旅行商问题-基本蚁群算法

旅行商系列算法

问题描述

对于n组城市坐标,寻找最短路径使其经过所有城市并回到起点。

问题数据集:tsp.eil51问题
1 37 52
2 49 49
3 52 64
4 20 26
5 40 30
6 21 47
7 17 63
8 31 62
9 52 33
10 51 21
11 42 41
12 31 32
13 5 25
14 12 42
15 36 16
16 52 41
17 27 23
18 17 33
19 13 13
20 57 58
21 62 42
22 42 57
23 16 57
24 8 52
25 7 38
26 27 68
27 30 48
28 43 67
29 58 48
30 58 27
31 37 69
32 38 46
33 46 10
34 61 33
35 62 63
36 63 69
37 32 22
38 45 35
39 59 15
40 5 6
41 10 17
42 21 10
43 5 64
44 30 15
45 39 10
46 32 39
47 25 32
48 25 55
49 48 28
50 56 37
51 30 40
最优解:426
基本蚁群算法基本流程

用一只蚂蚁的行走路径代表一个可行解;
1、确定迭代周期;
2、确定蚂蚁数;
3、对每只蚂蚁;
3.a、随机选择起点;
3.b、选择下一步;
3.b.a、根据所有与当前节点有关的路径上的信息素多少,决定下一步,一般信息素越多,选择该路径的概率越高;
3.b.b、蚂蚁有一定概率选择错误,即随机选择下一步;
3.c、选择后,在选择的路径上按照一定规则留下一定量的信息素;
3.d、最终的蚂蚁路径就是本次搜索的最佳路径;
4、等待周期结束;

基本蚁群算法在tsp问题上的应用

用一只蚂蚁的行走路径代表一个可行解,即一个城市序列;
1、确定迭代周期;
2、确定蚂蚁数;
2.a、对每只蚂蚁,随机选择起点;
2.a.a、进入循环选择后N-1个城市;
2.a.b、根据所有与当前节点城市相连的路径上的信息素多少,决定下一步,即选择信息素最多的路径;

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值