边缘和轮廓检测——计算机视觉的应用

本文介绍了计算机视觉中的边缘检测和轮廓检测技术,重点使用OpenCV库进行实现。内容包括Canny边缘检测器的工作原理及代码示例,以及轮廓检测的流程,强调了两者在目标识别和形状分析中的应用。同时,提供了调整参数以优化检测效果的建议。
摘要由CSDN通过智能技术生成

计算机视觉的重点是从计算机中的视频和图像中提取有意义的信息。在本文中,我们将从初学者开始探索一个使用 OpenCV 的出色计算机视觉项目。

其标题是“使用计算机视觉进行边缘和轮廓检测”。对于此项目,你还将看到描述、源代码和图像分类。

边缘检测

边缘检测是一种用于定位图像中对象边界的图像处理技术。最流行和广泛使用的算法之一是 Canny 边缘检测器。

Canny 边缘检测器是一种立足点检测算子,它使用多阶段算法来检测图像中的各种边缘。

主要阶段是:

  1. 使用高斯模糊算法,过滤掉图像。

  2. 在 Sobel 滤波器的帮助下,找出边缘的强度和方向。

  3. 通过应用非极大值抑制来隔离更强的边缘并将它们细化为一条像素宽的线。

  4. 使用滞后来隔离最简单的边缘。

下面我们安装 OpenCV :

pip3 install opencv-python matplotlib numpy

打开一个 Python 文件并按照以下步骤操作:

import cv2
import numpy as np
import matplotlib.pyplot as plt

现在为了检测它的边缘,我们必须读取图像:

# read the image
image = cv2.imread("little_flower.jpg")

首先,我们必须将图像转

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值