Transformer登上nature,被誉为大模型基石的它到底凭什么这么火?

Transformer模型最初由Google的研究人员在2017年提出,它是一种基于自注意力机制的深度学习模型,用于处理序列数据。不仅彻底改变了NLP领域,还在CV领域做出了一些开创性的工作。与卷积神经网络(CNN)相比,视觉 Transformer(ViT)依靠出色的建模能力,在 ImageNet、COCO 和 ADE20k 等多个基准上取得了非常优异的性能。随着Transformer的成功,研究人员一直在探索如何进一步改进和扩展这一架构。

5月15日,我们邀请到人工智能PHD,曾获某一区TOP期刊最佳论文奖Henry老师,为我们带来——荣登Nature!百变之王Transformer的进阶之路,深入详解Transformer最新工作进展及技术原理!

扫码免费参与直播

领导师推荐100+篇transformer必读论文&PPT原稿

3443f57aef550c6fa1e17c4ab7dad5d0.png

2d2cdd37801f1b39a4bbd92ced63289d.gif

部分transformer论文&ppt展示

导师简介:Henry老师

-人工智能PHD

-共发表20余篇SCI国际期刊和EI会议论文,包括一区期刊ISPRS Journal of Photogrammetry and Remote Sensing (影响因子12.7)等

-论文曾获某一区Top期刊年度最佳论文奖(为博士所在高校校史上首位获此殊荣的学者),谷歌学术被引1500余次

-研究领域:深度学习及其在计算机视觉、遥感图像处理和离岸可再生能源三大方向的应用,特别是CNN、注意力机制和视觉Transformer在图像分割、超分辨率等

直播大纲

1. Vision Transformer基础

2. Efficient ViT和加速技术

3. 自监督ViT技术

4. 多模态大模型 

6177519cd0ef5bef93da3152e34f21d7.jpeg

扫码免费参与直播

领导师推荐100+篇transformer必读论文&PPT原稿

ed20c126fdaf3fd978e25910abe34eac.png

Transformer模型的核心设计理念可以概括为以下几点:

1. 自注意力(Self-Attention)机制

-核心概念:Transformer模型的基础是自注意力机制,它允许模型在处理序列(如文本)时,对序列中的每个元素计算其与序列中其他元素的关联度。这种机制使得模型能够捕捉到序列内长距离依赖关系。

-优势:相比于之前的RNN和LSTM,自注意力机制能够在并行处理时有效地处理长距离依赖问题,显著提高了处理速度和效率。

3cbc2966ca77a81c049eb11a2ac9e2da.jpeg

2. 多头注意力(Multi-Head Attention)

-设计:在自注意力的基础上,Transformer引入了多头注意力机制,通过将注意力机制“拆分”成多个头并行运行,模型可以从不同的子空间学习信息。

-目的:这种设计使模型能够更好地理解语言的多种复杂关系,比如同义词和反义词关系、语法和语义关系等。

3. 位置编码(Positional Encoding)

-问题:由于Transformer完全基于注意力机制,缺乏序列的位置信息。

-解决方案:通过向输入序列的每个元素添加位置编码,模型能够利用这些信息来了解单词在句子中的位置关系。位置编码是与词嵌入相加的,以保留位置信息。

4. 编码器-解码器架构

-架构:Transformer模型包含编码器和解码器两部分。编码器用于处理输入序列,解码器则基于编码器的输出和之前的输出生成目标序列。

-特点:每个编码器和解码器层都包含多头注意力机制和前馈神经网络,通过残差连接和层归一化来优化训练过程。

5. 可扩展性和效率

-并行处理:与RNN和LSTM等序列模型相比,Transformer的自注意力机制允许对整个序列进行并行处理,显著提高了训练和推理的速度。

-适用范围:Transformer模型不仅适用于NLP任务,还被扩展到其他领域,如计算机视觉、音频处理等。

继DeepMind的新设计MoD大幅提升了 Transformer 效率后,谷歌又双叒开始爆改了!

与之前荣登Nature子刊的life2vec不同,谷歌的新成果Infini-attention机制(无限注意力)将压缩内存引入到传统的注意机制中,并在单个Transformer块中构建了掩码局部注意力和长期线性注意力机制。

这让Transformer架构大模型在有限的计算资源里处理无限长的输入,在内存大小上实现114倍压缩比。(相当于一个存放100本书的图书馆,通过新技术能存储11400本书)

ed7ceb28910b855b6930ea721b393244.png

扫码免费参与直播

领导师推荐100+篇transformer必读论文&PPT原稿

99508016271876c230faa1d2cf13b768.png

ViT基础

Vision Transformer(ViT)是一种基于Transformer架构的图像处理模型。它将输入图像分割成固定大小的patch,并将每个patch转换成向量表示,然后送入Transformer模型进行处理。通过自注意力机制,ViT能够有效地捕获图像中的全局和局部信息,从而在图像分类、语义分割和目标检测等任务上取得优异表现。

afb1ae4b66d3e2e1e15a6c0a3e3a97f8.png

图1. Vision Transformer架构

Efficient Transformer和加速技术

尽管ViT在图像处理任务上取得了显著成绩,但其计算量较大,训练和推理速度较慢。为了解决这一问题,研究人员提出了一系列加速技术,如窗口注意力机制、多尺度处理、稀疏注意力等。此外,Efficient Transformer模型也在降低计算复杂度的同时保持了较好的性能,为ViT的实际应用提供了可能。

45238cf9b48bbfc4aa95f9a08874d553.png

图2. Swin Transformer中的Window Attention

Transformer自监督学习

除了监督学习,Transformer模型还可以通过自监督学习进行预训练。在自监督学习中,模型通过利用输入数据的内在结构进行训练,无需人工标注的标签。这种方法不仅能够提高模型的泛化能力,还能够有效利用大规模未标记的数据进行预训练,为模型的迁移学习提供了更好的基础。

e342eb59e94243b477428ae8a1f67821.png

图3. 无监督学习中的对比学习

多模态LLM

除了单一模态的图像处理,Transformer模型还可以处理多模态数据,如文本和图像的联合处理。通过引入多模态LLM(Language-Image Models),模型能够同时理解文本和图像之间的关系,从而在视觉问答、图像标注等任务上取得更好的效果。

3f1a0bcddd9affe4513035b10da7dca0.png

图4. Flamingo架构示意图

29d5bda73372bb4c401f8e6aee33928d.png

图5. PaLM-E架构示意图

对于想要发表论文,对科研感兴趣或正在为科研做准备的同学,想要快速发论文有两点至关重

对于还没有发过第一篇论文,还不能通过其它方面来证明自己天赋异禀的科研新手,学会如何写论文、发顶会的重要性不言而喻。

发顶会到底难不难?近年来各大顶会的论文接收数量逐年攀升,身边的朋友同学也常有听闻成功发顶会,总让人觉得发顶会这事儿好像没那么难!

但是到了真正实操阶段才发现,并不那么简单,可能照着自己的想法做下去并不能写出一篇好的论文、甚至不能写出论文。掌握方法,有人指点和引导很重要!

还在为创新点而头秃的CSer,还在愁如何写出一篇好论文的科研党,一定都需要来自顶会论文作者、顶会审稿人的经验传授和指点。

很可能你卡了很久的某个点,在和学术前辈们聊完之后就能轻松解决。

扫描二维码

与大牛导师一对一meeting

350102b23710f35c94984ec6253355dd.png

文末福利

给大家送一波大福利!我整理了100节计算机全方向必学课程,包含CV&NLP&论文写作经典课程,限时免费领!

cd820bf0b41e5c3a8dae2329d8a38c34.png

2e1e5f2e47c9cc3bb7b508ac27fbe1e5.png

立即扫码 赠系列课程

-END-

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Transformer模型是一种用于自然语言处理(NLP)任务的深度学习模型,由Google在2017年提出。它在机器翻译任务中取得了很大的成功,并且被广泛应用于其他NLP任务,如文本分类、命名实体识别等。 Transformer模型的核心思想是完全基于自注意力机制(self-attention)来进行序列建模。传统的循环神经网络(RNN)和卷积神经网络(CNN)在处理长序列时存在一些问题,而Transformer通过引入自注意力机制来解决这些问题。 自注意力机制允许模型在处理每个输入位置时,能够同时考虑到序列中其他位置的信息。具体来说,Transformer模型将输入序列分别映射为查询(query)、键(key)和值(value)向量,并通过计算它们之间的相似度得到注意力权重。然后,根据注意力权重对值向量进行加权求和,得到每个位置的输出表示。这种自注意力机制使得模型能够更好地捕捉序列中的长距离依赖关系。 除了自注意力机制,Transformer模型还引入了残差连接和层归一化等技术,以加速训练过程并提高模型性能。整个模型由多个编码器和解码器层组成,编码器用于将输入序列编码为上下文表示,解码器用于生成目标序列。 总结一下,Transformer模型通过自注意力机制实现了对序列的建模,能够更好地处理长距离依赖关系。它在NLP任务中取得了很大的成功,并且成为了现代NLP领域的重要基础模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值