【Ray】【配置Ray 】

本文档介绍了如何配置Ray,包括从Python API和命令行进行配置。内容涵盖集群资源、日志和调试以及端口配置。Ray默认检测可用资源,但可以指定资源覆盖。在多节点设置中,需先启动Ray集群服务,再通过Python连接。同时,文章讨论了如何调整日志和调试设置,以及端口配置,包括Raylet、对象管理器、运行时环境代理的端口等。
摘要由CSDN通过智能技术生成

目录

Configuring Ray 

配置Ray 

1 Cluster Resources

1 群集资源编号

2 Logging and Debugging

2 日志和调试

3 Ports configurations

3 端口配置

3.1 All Nodes 

3.1 所有节点编号

3.2 Head Node

3.2 头节点编号

Configuring Ray 

配置Ray 

        This page discusses the various way to configure Ray, both from the Python API and from the command line. Take a look at the ray.init documentation for a complete overview of the configurations.
        本页讨论了配置Ray的各种方法,包括从Python API和命令行。请查看 ray.init 文档,了解配置的完整概述。

        For the multi-node setting, you must first run ray start on the command line to start the Ray cluster services on the machine before ray.init in Python to connect to the cluster services. On a single machine, you can run ray.init() without ray start, which will both start the Ray cluster services and connect to them.
        对于多节点设置,您必须首先在命令行上运行 ray start 以启动机器上的Ray集群服务,然后才能在Python中运行 ray.init 以连接到集群服务。在一台机器上,您可以运行 ray.init() 而不运行 ray start ,这将启动Ray集群服务并连接到它们。

1 Cluster Resources

1 群集资源编号

Ray by default detects available resources.
Ray默认检测可用资源。

import ray

# This automatically detects available resources in the single machine.
ray.init()

If not running cluster mode, you can specify cluster resources overrides through ray.init as follows.
如果未运行群集模式,则可以通过 ray.init 指定群集资源覆盖,如下所示。

# If not connecting to an existing cluster, you can specify resources overrides:
ray.init(num_cpus=8, num_gpus=1)
# Specifying custom resources
ray.init(num_gpus=1, resources={
      'Resource1': 4, 'Resource2': 16})

When starting Ray from the command line, pass the --num-cpus and --num-gpus flags into ray start. You can also specify custom resources.
从命令行启动Ray时,将 --

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

资源存储库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值