目录
1.4 作业调度和资源管理系统(Job Scheduler and Resource Manager)
高性能计算平台HPC的原理
高性能计算平台(HPC, High-Performance Computing) 是指为了满足计算密集型应用(如科学计算、数据分析、模拟和建模等)所需要的大规模、高效计算能力而设计和构建的计算平台。
HPC系统通常由大量的计算节点组成,这些节点通过高速网络连接并协同工作,从而提供比单台计算机高得多的计算能力。
HPC系统的基本原理是通过集群、并行计算和高效的数据管理来加速处理速度和提升计算性能。
它的核心目标是利用并行性(计算并行性、数据并行性等)来提高计算速度和效率,同时尽量减少计算过程中的瓶颈。
1. HPC的架构和组成
HPC系统的组成通常包括以下几个主要部分:
1.1 计算节点(Compute Nodes)
计算节点是HPC系统中进行实际计算的核心组成部分。
每个计算节点通常配备多核CPU(或GPU)和内存。
计算节点之间可以通过高速网络连接,共同协作解决计算问题。
- CPU节点:最常见的计算节点,通常由多个处理核心组成,适合执行大多数科学计算和数值仿真。
- GPU节点:通过配备高性能图形处理单元(GPU),能够显著加速并行计算密集型任务,特别适用于深度学习、图像处理和数据分析任务。
1.2 网络互联(Interconnect)
节点之间需要通过高带宽、低延迟的网络进行通信。HPC系统常用的网络互联技术有:
- InfiniBand:常用于大规模集群计算,具有低延迟和高带宽的特点,适合高速数据交换。
- 以太网:在一些小型集群或低成本系统中使用,较为常见的标准网络。
- 光纤通道(Fiber Channel):用于连接存储设备和计算节点,提供高速数据传输。
1.3 存储系统(Storage System)
存储系统在HPC中用于存储大量的数据和计算结果。存储系统通常包括:
- 共享存储:提供集群中所有节点可访问的