11 opencv python 图像阈值

opencv python 图像阈值

  • cv2.THRESH_BINARY
  • cv2.THRESH_BINARY_INV
  • cv2.THRESH_TRUNC
  • cv2.THRESH_TOZERO
  • cv2.THRESH_TOZERO_INV

opencv 所有全局阈值格式

['THRESH_BINARY', 'THRESH_BINARY_INV', 'THRESH_MASK', 'THRESH_OTSU', 'THRESH_TOZERO', 'THRESH_TOZERO_INV', 'THRESH_TRIANGLE', 'THRESH_TRUNC']

import os
import matplotlib.pyplot as plt
import cv2

img = cv2.imread('huiDu.jpg', 0)

flag = [i for i in dir(cv2) if i.startswith('THRESH_')]
print(flag)

ret, thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)

titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

fig = plt.figure(figsize=(80, 50))

for i in range(6):
    plt.subplot(3,2,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i], fontsize = 100)
    plt.xticks([]),plt.yticks([])

自适应阈值

  • 此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。
  • 因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。
  • Block Size - 邻域大小(用来计算阈值的区域大小)。
  • C - 这就是是一个常数,阈值就等于的平均值或者加权平均值减去这个常数。

opencv 所有自适应阈值格式

['ADAPTIVE_THRESH_GAUSSIAN_C', 'ADAPTIVE_THRESH_MEAN_C']

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值