RCNN(Region-based Convolutional Neural Networks)

本文介绍了一种多物体识别和定位的方法。该方法基于已训练好的CNN分类器,并结合selectivesearch进行候选区域选择,通过SVM进行分类,利用NMS减少冗余框,最后采用boundingboxregression对候选框进行精调。
摘要由CSDN通过智能技术生成

解决了多物体识别和定位的问题,问题在于不是end to end,而且太慢。
流程:
1.选取一个训练好的CNN分类器作为基础模型
2.使用selective search(就是将图像中的像素按照纹理和颜色做聚类)预选出2000个预选框,然后将预选框中的内容裁剪下来,resize后作为模型的输入
3.抽取模型第5个pooling的输出作为图像特征
4.将图像特征输入SVM二分类器,用于分类
5.对于SVM判断出有东西的预选框使用NMS(non maximum suppression)经行进一步筛选,也即先选出概率最高的那个框,然后寻找与他有重叠的框,计算两者之间的IOU,如果超过阈值,则两个框框的是同一个东西,因此删掉后者。重复直到无法删除。
6.bounding box regression,微调预选框,也即将图像特征输入一个回归器,用于输出原有预选框的偏移值

参考链接:https://www.bilibili.com/video/BV1VN411d7Br?from=search&seid=9589903293114484796

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值