第7章 数学

A1049

在这里插入图片描述


#include<iostream>
#include<vector>
using namespace std;

int n;

int cacl(int n)
{
    vector<int> a;
    while(n)
    {
        a.push_back(n%10);
        n/=10;
    }
    int res=0;
    for(int i=a.size()-1; i>=0; i--)
    {
        int d=a[i],left=0,right=0,power=1;

        for(int j=a.size()-1; j>i; j--)
            left=left*10+a[j];

        for(int j=i-1; j>=0; j--)
        {
            right=right*10+a[j];
            power*=10;
        }

        if(d==0)
            res+=left*power;
        else if(d==1)
            res+=left*power+right+1;
        else
            res+=(left+1)*power;

    }
    return  res;
}

int main()
{
    cin >> n;
    cout << cacl(n);
    return 0;
}

A1059


#include<iostream>
#include<vector>
using namespace std;
vector<int> zhishu;

bool isPrime(int x)
{
    if(x==1)
        return false;

    for(int i=2; i*i<=x; i++)
        if(x%i==0)
            return false;

    return true;
}

int findprime(int x)
{
    int k=2;
    while(x%k!=0 || isPrime(k)==false)
        k++;
    return k;
}

int findgeshu(int x)
{
    int cnt=1;
    for(int i=x+1; i<zhishu.size(); i++)
    {
        if(zhishu[i]==zhishu[x])
            cnt++;
    }
    return cnt;
}

int main()
{
    int n,m;
    cin >> n;
    m=n;

    while(n>1)
    {
        zhishu.push_back(findprime(n));
        n/=findprime(n);

    }

    cout << m << "=";
    bool flag=true;
    for(int i=0; i<zhishu.size(); i++)
    {
        if(findgeshu(i)>1)
        {
            if(flag)
            {
                flag=false;
            }
            else
                cout << "*";
            cout << zhishu[i] << "^" << findgeshu(i);
            i+=findgeshu(i)-1;
        }
        else
            {
                if(flag)
                {
                    flag=false;
                }
                else
                    cout << "*";
                cout << zhishu[i];
            }
    }
    return 0;
}

A1081



#include<iostream>
using namespace std;

typedef long long LL;

LL gcd(LL a, LL b)      //辗转相除法,求最大公约数
{
    return b?gcd(b,a%b):a;
}

int main()
{
    int n;
    cin >> n;

    LL a=0,b=1;

    for(int i=0; i<n; i++)
    {
        LL c,d;
        scanf("%lld/%lld",&c,&d);

        int t=gcd(c,d);
        c/=t;
        d/=t;

        t=gcd(b,d);
        a=a*d/t+c*b/t;
        b=b*d/t;

        t=gcd(a,b);
        a/=t;
        b/=t;
    }

    if(b==1)         //此时 表示 是 一个 整数
        printf("%lld",a);
    else
    {
        if(a>b)          //此时 表示 假分数
        {
            printf("%lld ",a/b);
            a%=b;
        }
        printf("%lld/%lld",a,b);        //此时 表示 真分数
    }
    return 0;
}

A1088



#include<iostream>
using namespace std;

typedef long long LL;

LL gcd(LL a, LL b)
{
    return b?gcd(b,a%b):a;
}

void print(LL a, LL b)
{
    LL t=gcd(a,b);
    a/=t;
    b/=t;

    if(b<0)    //如果分母为负数,分子与分母同乘-1
    {
        a*=-1;
        b*=-1;
    }

    bool ff=a<0;

    if(ff)
        cout << "(";

    if(b==1)
    {
        printf("%lld",a);
    }
    else
    {
        if(abs(a)>=b)
        {
            printf("%lld ",a/b);
            a=abs(a)%b;
        }
        printf("%lld/%lld",a,b);
    }

    if(ff)
        cout << ")";

}

void add(LL a, LL b, LL c, LL d)
{
    print(a,b);
    cout << " + ";
    print(c,d);
    cout << " = ";
    a=a*d+b*c;
    b=b*d;
    print(a,b);
    cout << endl;
}

void sub(LL a, LL b, LL c, LL d)
{
    print(a,b);
    cout << " - ";
    print(c,d);
    cout << " = ";
    a=a*d-b*c;
    b=b*d;
    print(a,b);
    cout << endl;
}

void mul(LL a, LL b, LL c, LL d)
{
    print(a,b);
    cout << " * ";
    print(c,d);
    cout << " = ";
    a=a*c;
    b=b*d;
    print(a,b);
    cout << endl;
}

void div(LL a, LL b, LL c, LL d)
{
    print(a,b);
    cout << " / ";
    print(c,d);
    cout << " = ";
    if(c==0)
        cout << "Inf" << endl;
    else
    {
            a=a*d;
    b=b*c;
    print(a,b);
    cout << endl;
    }

}

int main()
{
    LL a,b,c,d;
    scanf("%lld/%lld %lld/%lld",&a,&b,&c,&d);

    add(a,b,c,d);

    sub(a,b,c,d);
    mul(a,b,c,d);
    div(a,b,c,d);

    return 0;

}

A1096



/*
    这道题 实质 就是 求 n是某个连续数字相乘的倍数,然后我们找出这个连续数字的最大长度

    题中所说的 最小的序列 比如 abc  def 这两个连续的数字 序列 均满足 abc=def=n 但是 def的每个值都大于abc,这就不可能,所以只要能找出的就是 最小的 序列

    这道题 解法是
        从2 开始  , 看看630是不2*3的倍数 ,然后再看630是不2*3*4的倍数
        再从3开始,依次类推

*/

#include<iostream>
#include<vector>
using namespace std;

int main()
{
    int n;
    cin >> n;
    vector<int> res;
    //注意i<=n/i 比 i*i<=n正确
    for(int i=2; i<=n/i; i++)        //如果i*i>n了,那么i一定不是n的因子
    {
        if(n%i==0)
        {
            vector<int> temp;
            for(int j=i,m=n; m%j==0; j++)
            {
                temp.push_back(j);
                m/=j;
            }
            if(res.size()<temp.size())
            {
                res=temp;
            }
        }

    }



    if(res.size()==0)
    {
        cout << 1 << endl << n;
        return 0;
    }

    cout << res.size() << endl;
    for(int i=0; i<res.size(); i++)
    {
        if(i!=0)
            cout << "*";
        cout << res[i];
    }

    return 0;
}

A1103

在这里插入图片描述
在这里插入图片描述



#include<iostream>
#include<cstring>
using namespace std;

const int maxn=410;

int f[21][maxn][maxn];

int n,p,k;

int power(int a,int b)
{
    int res=1;
    for(int i=0; i<b; i++)
        res*=a;
    return res;
}

int main()
{
    cin >> n >> k >> p;
    memset(f,-0x3f,sizeof f);

    f[0][0][0]=0;

    int m;
    for(m=1; ; m++)
    {
        int v=power(m,p);

        if(v>n)
            break;

        for(int i=0; i<=n; i++)
            for(int j=0; j<=k; j++)
            {
                f[m][i][j]=f[m-1][i][j];
                if(i>=v && j)
                {
                    f[m][i][j]=max(f[m][i][j],f[m][i-v][j-1]+m);
                }
            }


    }
    m--;
    if(f[m][n][k]<0)
        cout << "Impossible";
    else
    {
        bool flag=true;
        cout << n << " = ";
        while(m)   //选择 某一个 数字 开始 向前 递减
        {
            int v=power(m,p);
            while(n>=v && k && f[m][n-v][k-1]+m==f[m][n][k])   //m是可以重复,所以用while循环
            {
                if(flag)
                    flag=false;
                else
                    cout << " + ";
                cout << m << "^" << p;
                n-=v;
                k--;
            }
            m--;
        }
    }
    return 0;
}

A1104

在这里插入图片描述


#include<iostream>
using namespace std;

int main()
{
    int n;
    cin >> n;
    long double res=0;       //这个res必须 写成 long double类型 否则 不能ac
    for(int i=1; i<=n; i++)
    {
        double temp;
        cin >> temp;
        res+=temp*i*(n-i+1);
    }
    printf("%.2Lf",res);        //long double类型 的 %Lf
    return 0;
}

A1112


/*
    总的思路,对于字符串进行标记,如果是 有 问题的 字符,在st中标记为0,没有问题的字符 标记为1
    然后 根据 字符 中 标记的 值 ,如果是有问题的 直接 输出,并且 将st中的值 改为2,如果是没有将字符 加入到 res中,
    如果是坏的 字符,需要 跳转

*/

#include<iostream>
using namespace std;

const int maxn=200;

int st[maxn];

int main()
{
    int k;
    string s;
    cin >> k >> s;

    for(int i=0; i<s.size(); i++)
    {
        int j=i+1;
        while(j<s.size() && s[i]==s[j])
            j++;
        int len=j-i;
        if(len%k)     //表示该字符就是 正常的
            st[s[i]]=1;
        i=j-1;     //后面 又有 一个 i++
    }
    string res;
    for(int i=0; i<s.size(); i++)
    {
        if(st[s[i]]==0)
        {
            cout << s[i];
            st[s[i]]=2;
        }

        if(st[s[i]]==1)
        {
            res+=s[i];
        }
        else
        {
            res+=s[i];
            i+=k-1;
        }

    }
    cout << endl << res << endl;
    return 0;
}

A1116


#include<iostream>
#include<unordered_set>
using namespace std;

const int maxn=10010;

int n;

int st[maxn];

bool isPrime(int x)
{
    for(int i=2; i*i<=x; i++)
        if(x%i==0)
            return false;
    return true;
}

int main()
{
    cin >> n;
    unordered_set<int>s;
    for(int i=1; i<=n; i++)
    {
        int temp1;
        cin >> temp1;
        st[temp1]=i;
        s.insert(temp1);
    }

    int k;
    cin >> k;
    bool inq[maxn]={false};
    for(int i=0; i<k; i++)
    {
        int temp2;
        cin >> temp2;
        if(s.count(temp2)==0)
        {
            printf("%04d: Are you kidding?\n",temp2);
        }
        else
        {
            if(inq[temp2]==false)
            {
                if(st[temp2]==1 || st[temp2]==0)
                {
                    printf("%04d: Mystery Award\n",temp2);
                }
                else if(isPrime(st[temp2]))
                {
                    printf("%04d: Minion\n",temp2);
                }
                else
                {
                    printf("%04d: Chocolate\n",temp2);
                }
                inq[temp2]=true;
        }
        else
        {
            printf("%04d: Checked\n",temp2);
        }
        }
    }
    return 0;
}

A1152



#include<iostream>
using namespace std;

int n,l;

bool isPrime(int x)
{
    if(x==1 || x==0)
        return false;
    for(int i=2; i*i<=x; i++)
        if(x%i==0)
            return false;
    return true;
}

int main()
{
    cin >> n >> l;
    string a,b;
    cin >> a;
    for(int i=0; i+l<=a.size(); i++)     //加上一个l
    {
        string temp=a.substr(i,l);
        int temp1=stoi(temp);

        if(isPrime(temp1))
        {
            cout << temp;
            return 0;
        }
    }
    cout << 404;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值