python 自定义线性回归

在实际工作中,有时候sklearn库的标准API不能满足业务需求,这时候需要自定义算法,下面是我自定义的标准线性回归函数,如果有需要,可以在此基础上进行扩展,比如局部加权线性回归的定义

class self_linear_model():
    def __init__(self):
        self.w = None

    def fit(self, X, y):
        # Insert constant ones for bias weights
        print (X.shape)
        X = np.insert(X, 0, 1, axis=1)
        print (X.shape)
        X_ = np.linalg.inv(X.T.dot(X))
        self.w = X_.dot(X.T).dot(y)

    def predict(self, X):
        # Insert constant ones for bias weights
        X = np.insert(X, 0, 1, axis=1)
        y_pred = X.dot(self.w)
        return y_pred
def mean_squared_error(y_true, y_pred):
    mse = np.mean(np.power(y_true - y_pred, 2))
    return mse

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wshzd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值