kmeans中的k选择

下面通过python定义一个函数来实现kmeans中k的选择,输入为可选择k的最大值和原始数据,最后输出不同k的折线图,一般选择图中拐点
def SelectK(maxK,totalList):
    from scipy.spatial.distance import cdist
    K = range(1, maxK)
    meandistortions = []
    for k in K:
        kmeans = KMeans(n_clusters=k)
        kmeans.fit(totalList)
        meandistortions.append(sum(np.min(cdist(totalList, kmeans.cluster_centers_, 'euclidean'), axis=1)) / np.array(totalList).shape[0])
    plt.plot(K, meandistortions, 'bx-')
    plt.xlabel('k')
    plt.ylabel('平均畸变程度')
    plt.xticks(K)
    plt.title('用肘部法则来确定最佳的K值')
    plt.show()

下面通过自己找的一些数据来生成的k的选择图像

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wshzd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值