批量估计问题

最大后验估计MAP
x ^ = arg ⁡ max ⁡ x p ( x ∣ u , y ) \hat{x}=\arg \max _{x}p\left( x|u,y\right) x^=argxmaxp(xu,y)
我们希望在给定先验信息和所有时刻的输入 u u u和观测 y y y,推断出所有时刻的最优状态 x ^ \hat{x} x^。为此我们定义几个宏观变量。
x = x 0 : K = ( x 0 , ⋯   , x K ) u = ( x ˇ 0 , u 1 : k ) = ( x ˇ 0 , u 1 , ⋯   , u K ) y = y 0 : K = ( y 0 , ⋯   , y K ) \begin{aligned} x&=x_{0:K}=\left( x_{0},\cdots ,x_{K}\right) \\ u&=(\check{x}_{0},u_{1:k}) =\left( \check{x}_{0},u_{1},\cdots ,u_{K}\right)\\ y&=y_{0:K}=\left( y_{0},\cdots ,y_{K}\right) \end{aligned} xuy=x0:K=(x0,,xK)=(xˇ0,u1:k)=(xˇ0,u1,,uK)=y0:K=(y0,,yK)
用贝叶斯公式重写MAP估计:
x ^ = arg ⁡ max ⁡ x p ( x ∣ u , y ) = arg ⁡ max ⁡ x p ( y ∣ x , u ) p ( x ∣ u ) p ( y ∣ u ) = arg ⁡ max ⁡ x p ( y ∣ x ) p ( x ∣ u ) \hat{x}=\arg \max _{x}p\left( x| u,y\right) =\arg \max _{x}\dfrac{p\left( y|x,u\right) p\left( x|u\right) }{p\left( y| u\right) }=\arg \max _{x}p\left( y| x\right) p\left( x| u\right) x^=argxmaxp(xu,y)=argxmaxp(yu)p(yx,u)p(xu)=argxmaxp(yx)p(xu)
这里我们吧分母略去,因为它与 x x x无关。同时省略 p ( y ∣ x , u ) p(y|x,u) p(yx,u)中的 u u u,因为如果 x x x已知,它不会影响观测数据(观测方程与它无关)。
接下来我们做出一个重要假设:对于所有时刻 k = 0 , ⋯   , K k=0,\cdots,K k=0,,K,所有噪声项 w k w_k wk n k n_k nk之间是无关的,即 y k y_k yk只与 x k x_k xk有关,则可以用乘法公式对 p ( y ∣ x ) p(y|x) p(yx)进行因子分解:
p ( y ∣ x ) = p ( y 0 ∣ x 0 : K ) p ( y 1 ∣ x 0 : K , y 0 ) ⋯ p ( y k ∣ x 0 : K , y 0 : K − 1 ) = ∏ k = 0 K p ( y k ∣ x k ) \begin{aligned} p\left( y| x\right) &=p\left( y_{0}| x_{0:K}\right) p\left( y_{1}| x_{0:K},y_{0}\right) \cdots p\left( y_{k}| x_{0:K},y_{0:K-1}\right) \\ &=\prod ^{K}_{k=0}p\left( y_{k}| x_{k}\right) \end{aligned} p(yx)=p(y0x0:K)p(y1x0:K,y0)p(ykx0:K,y0:K1)=k=0Kp(ykxk)
同理, x k x_k xk只与 x k − 1 , u k x_{k-1},u_k xk1,uk 有关,可得:
p ( x ∣ u ) = p ( x 0 ∣ u ) p ( x 1 ∣ u , x 0 ) … p ( x K ∣ u , x 0 : K − 1 ) = p ( x 0 ∣ x ˇ 0 ) ∏ k = 1 K p ( x k ∣ x k − 1 , u k ) \begin{aligned} p\left( x| u\right) &=p\left( x_{0}| u\right) p\left( x_{1}| u,x_{0}\right) \ldots p\left( x_{K}| u,x_{0:K-1}\right) \\ &=p\left( x_{0}| \check{x}_{0}\right) \prod ^{K}_{k=1}p\left( x_{k}| x_{k-1},u_{k}\right) \end{aligned} p(xu)=p(x0u)p(x1u,x0)p(xKu,x0:K1)=p(x0xˇ0)k=1Kp(xkxk1,uk)

p ( x 0 ∣ x ˇ 0 ) = 1 ( 2 π ) N det ⁡ P ˇ 0 × exp ⁡ ( − 1 2 ( x 0 − x ˇ 0 ) T P ˇ 0 − 1 ( x 0 − x ˇ 0 ) ) p\left( x_{0}| \check{x}_{0}\right) =\dfrac{1}{\sqrt{\left( 2\pi \right) ^{N}\det \check{P}_{0}}}\times \exp \left( -\dfrac{1}{2}\left( x_{0}-\check{x}_{0}\right) ^{T}\check{P}_{0}^{-1}\left( x_{0}-\check{x}_{0}\right) \right) p(x0xˇ0)=(2π)NdetPˇ0 1×exp(21(x0xˇ0)TPˇ01(x0xˇ0))

p ( x k ∣ x k − 1 , u k ) = 1 ( 2 π ) N det ⁡ Q k × exp ⁡ ( − 1 2 ( x k − f ( x k − 1 , u k , 0 ) ) T Q k − 1 ( x k − f ( x k − 1 , u k , 0 ) ) ) p\left( x_{k}| x_{k-1},u_{k}\right) =\dfrac{1}{\sqrt{\left( 2\pi \right) ^{N}\det Q_{k}}}\times \exp \left( -\dfrac{1}{2}\left( x_{k}-f\left( x_{k-1},u_{k},0\right) \right) ^{T}Q_{k}^{-1}\left( x_{k}-f\left( x_{k-1},u_{k},0\right) \right) \right) p(xkxk1,uk)=(2π)NdetQk 1×exp(21(xkf(xk1,uk,0))TQk1(xkf(xk1,uk,0)))

p ( y k ∣ x k ) = 1 ( 2 π ) M det ⁡ R k × exp ⁡ ( − 1 2 ( y k − h ( x k , 0 ) ) T R k − 1 ( y k − h ( x k , 0 ) ) ) p\left( y_{k}| x_{k}\right) =\dfrac{1}{\sqrt{\left( 2\pi \right) ^{M}\det R_{k}}}\times \exp \left( -\dfrac{1}{2}\left( y_{k}-h\left( x_{k},0\right) \right) ^{T}R_{k}^{-1}\left( y_{k}-h\left( x_{k},0\right) \right) \right) p(ykxk)=(2π)MdetRk 1×exp(21(ykh(xk,0))TRk1(ykh(xk,0)))
对等式两侧取对数:
ln ⁡ ( p ( y ∣ x ) p ( x ∣ u ) ) = ln ⁡ p ( x 0 ∣ x ˇ 0 ) + ∑ k = 1 k ln ⁡ p ( x k ∣ x k − 1 , u k ) + ∑ k = 0 k ln ⁡ p ( y k ∣ x k ) \ln \left( p\left( y| x\right) p\left( x|u\right) \right) =\ln p\left( x_{0}| \check{x}_{0}\right) +\sum ^{k}_{k=1}\ln p\left( x_{k}| x_{k-1},u_{k}\right) +\sum ^{k}_{k=0}\ln p\left( y_{k}| x_{k}\right) ln(p(yx)p(xu))=lnp(x0xˇ0)+k=1klnp(xkxk1,uk)+k=0klnp(ykxk)

ln ⁡ p ( x 0 ∣ x ˇ 0 ) = − 1 2 ( x 0 − x ˇ 0 ) T P 0 − 1 ( x 0 − x ˇ 0 ) − 1 2 ln ⁡ ( ( 2 π ) N det ⁡ P ˇ 0 ) ⏟ 与 x 无关 \ln p\left( x_{0}| \check{x}_{0}\right) =-\dfrac{1}{2}\left( x_{0}-\check{x}_{0}\right) ^{T}P_{0}^{-1}\left( x_{0}-\check{x}_{0}\right) -\underbrace{\dfrac{1}{2}\ln \left( \left( 2\pi \right) ^{N}\det \check{P}_{0}\right)}_{与x无关} lnp(x0xˇ0)=21(x0xˇ0)TP01(x0xˇ0)x无关 21ln((2π)NdetPˇ0)
ln ⁡ p ( x k ∣ x k − 1 , u k ) = − 1 2 ( x k − f ( x k − 1 , u k , 0 ) ) T Q k − 1 ( x k − f ( x k − 1 , u k , 0 ) ) − 1 2 ln ⁡ ( ( 2 π ) N det ⁡ Q k ) ⏟ 与 x 无关 \ln p\left( x_{k}| x_{k-1},u_{k}\right) =-\dfrac{1}{2}\left( x_{k}-f\left( x_{k-1},u_{k},0\right) \right) ^{T}Q_{k}^{-1}\left( x_{k}-f\left( x_{k-1},u_{k},0\right) \right) -\underbrace{\dfrac{1}{2}\ln \left( \left( 2\pi \right) ^{N}\det Q_{k}\right)}_{与x无关} lnp(xkxk1,uk)=21(xkf(xk1,uk,0))TQk1(xkf(xk1,uk,0))x无关 21ln((2π)NdetQk)
ln ⁡ p ( y k ∣ x k ) = − 1 2 ( y k − h ( x k , 0 ) ) π R k − 1 ( y k − h ( x k , 0 ) ) − 1 2 ln ⁡ ( ( 2 π ) M det ⁡ R k ) ⏟ 与 x 无关 \ln p\left( y _{k}| x_{k}\right) =-\dfrac{1}{2}\left( y_{k}-h\left( x_{k},0\right) \right) ^{\pi }R_{k}^{-1}\left( y_{k}-h\left( x_{k},0\right) \right) -\underbrace{\dfrac{1}{2}\ln \left( \left( 2\pi \right) ^{M}\det R_{k}\right)}_{与x无关} lnp(ykxk)=21(ykh(xk,0))πRk1(ykh(xk,0))x无关 21ln((2π)MdetRk)

  • 9
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shilong Wang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值