LLaMA-Factory 微调LLaMA3

LoRA介绍

LoRA(Low-Rank Adaptation)是一种用于大模型微调的技术, 通过引入低秩矩阵来减少微调时的参数量。在预训练的模型中, LoRA通过添加两个小矩阵B和A来近似原始的大矩阵ΔW,从而减 少需要更新的参数数量。具体来说,LoRA通过将全参微调的增量 参数矩阵ΔW表示为两个参数量更小的矩阵B和A的低秩近似来实 现:

• [ W_0 + \Delta W = W_0 + BA ] • 其中,B和A的秩远小于原始矩阵的秩,从而大大减少了需要更新 的参数数量。

LLaMA-Factory 框架

首先需要通过vscode连接远程服务器哦

如果是租赁的AutoDL服务器,一定要将模型下载到数据盘。

git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e .

准备训练数据

训练数据: fintech.json identity.json 将训练数据放在 LLaMA-Factory/data/fintech.json

并且修改数据注册文件:LLaMA-Factory/data/dataset_info.json

 "fintech": {
 "file_name": "fintech.json",
 "columns": {
 "prompt": "instruction",
 "query": "input",
 "response": "output",
 "history": "history"
 }
 }

启动 Web UI

cd LLaMA-Factory

llamafactory-cli webui

vscode自带端口转发,不需要进行内网穿透了。

一定要在LLaMA-Factory 目录下启动。

模型准备

pip install modelscop #安装modelscope平台

sdk方式下载模型,同时可以查看模型整体的大小和权重。

模型微调,微调 Llama-3.2-1B-Instruct 模型

### 导出并使用 LLaMA-Factory 训练的模型 #### 模型导出过程 对于已经完成微调LLaMA 模型,在 LLaMA-Factory 中执行导出操作可以确保该模型能够被用于后续的应用场景。当一切设置就绪并且微调流程结束之后,用户界面通常会提供一个直观的方式来进行最终步骤的操作[^1]。 为了启动这一进程,“开始导出”按钮是整个界面上用来触发此动作的关键控件。一旦按下这个按钮,系统即刻着手处理并将经过优化调整后的参数保存到指定位置。导出结束后,应当访问服务器上的特定文件夹来获取刚刚生成的新版本模型文件[^2]。 ```bash # 假设已登录至远程服务器并通过命令行管理环境 cd /path/to/model/export/directory/ ls -l ``` 这段脚本展示了如何切换目录至模型存储的位置,并列出其中的内容以便确认新近添加或更新过的项目。 #### 使用导出的模型 成功下载所需的模型文件后,下一步便是将其集成进实际应用当中去。这可能涉及到加载这些权重数据进入新的实例化对象内,或是直接替换现有生产环境中正在使用的旧版副本。具体方法取决于所采用框架的支持情况和个人偏好。 考虑到 LLaMA-Factory 主要面向本地运算的需求设计而成,因此即使是在不具备互联网连接的工作站上也能顺利完成上述任务。只要前期准备工作充分——比如准备好足够的硬件支持特别是图形处理器(GPU),还有按照官方文档指示正确配置好软件栈,则整个迁移过程应该相对顺畅无阻[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值