二 . voc 数据集转yolov5

本文介绍了如何将VOC数据集拆分为训练集和验证集,并转化为适用于YOLOv5的格式,以便于进行计算机视觉模型的训练。
摘要由CSDN通过智能技术生成

一. 数据集拆分 train&val

根据第一步得到如下数据集组成结构:

 由下代码变成:

import xml.etree.ElementTree as ET
import os


sets = ['train', 'val']  # 需要转换训练集. 验证集
Root = '../datasets/voc-end/' # 数据集目录
classes = ["person", "chef_uniform", "voc_clothes"]  # 修改为自己的label


def convert(size, box):
    dw = 1./(size[0]) 
    dh = 1./(size[1]) 
    x = (box[0] + box[1])/2.0 - 1
    y = (box[2] + box[3])/2.0 - 1
    w = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值