2.3.2 Layer:

  用于模型和计算的基础。所有的Pooling,Convolve, apply nonlinearities等操作都在这里实现。Layer中:input data用bottom表示,output data用top表示。每一层定义了三种操作setup(Layer初始化),forward(正向传导,根据input计算output),backward(反向传导计算,根据output计算input的梯度)。forward&backward有CPU和GPU两种方式的实现。

 

1、layer源码分析

$ cd caffe/examples/mnist

$ vim lenet.prototxt

1 name: "LeNet" //该层的名称,可随意取

2 layer {

3 name: "data"

4 type: "Input"

5 top: "data" //第一层只有输入

6 input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }

7 }

8 layer {

9 name: "conv1"

10 type: "Convolution"

11 bottom: "data" //输入数据’input data’

12 top: "conv1" //输出数据’output data’

13 param {

14 lr_mult: 1

15 }

16 param {

17 lr_mult: 2

18 }

 

(2)实例说明

layer {

name: "cifar" //表示该层名称,可随意取

type: "Data" //层类型,如果是Data,表示数据来源于LevelDB或LMDB。根据数据的来源不同,数据层的类型也不同(后面会详细阐述)。一般在练习的时候,我们都是采用的LevelDB或LMDB数据,因此层类型设置为Data。

top: "data" //top或bottom: 每一层用bottom来输入数据,用top来输出数据。如果只有top没有bottom,则此层只有输出,没有输入。反之亦然。如果有多个 top或多个bottom,表示有多个blobs数据的输入和输出。

top: "label" //data 与 label: 在数据层中,至少有一个命名为data的top。如果有第二个top,一般命名为label。 这种(data,label)配对是分类模型所必需的。

include { // 一般训练的时候和测试的时候,模型的层是不一样的。该层(layer)是属于训练阶段的层,还是属于测试阶段的层,需要用include来指定。如果没有include参数,则表示该层既在训练模型中,又在测试模型中。

phase: TRAIN

}

transform_param { //Transformations: 数据的预处理,可以将数据变换到定义的范围内。

scale: 0.00390625 //如设置scale为0.00390625,实际上就是1/255, 即将输入数据由0-255归一化到0-1之间

mean_file_size: "examples/cifar10/mean.binaryproto"// 用一个配置文件来进行均值操作

mirror: 1 // 1表示开启镜像,0表示关闭,也可用ture和false来表示

crop_size: 227 //剪裁一个 227*227的图块,在训练阶段随机剪裁,在测试阶段从中间裁剪

 

}

data_param {

source: "examples/cifar10/cifar10_train_lmdb"

batch_size: 100

backend: LMDB

 

(3)五种衍生layers: data_layer、neuron_layer、loss_layer、common_layer、vision_layer

a、data_layer

主要包含与数据有关的文件。data是caffe数据入口网络的最底层,并支持多种格式,在这之中有5种LayerType:

1、数据来自于数据库(如LevelDB和LMDB)

DATA

用于LevelDB或LMDB数据格式的输入类型,

输入参数:source,batch_size,(rand_skip),(backend)。后两个可选。

layer {

name: "mnist"

type: "Data"

top: "data"

top: "label"

include {

phase: TRAIN

}

transform_param {

scale: 0.00390625

}

data_param {

source: "examples/mnist/mnist_train_lmdb" //包含数据库的目录名称

batch_size: 64 //每次处理的数据个数

backend: LMDB //选择是采用LevelDB还是LMDB, 默认是LevelDB

}

}

// rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。

 

2、数据来自于内存

层类型:MemoryData

MEMORY_DATA

可以直接从内存读取数据,使用时需要调用MemoryDataLayer::Reset.

输入参数:batch_size,channels,height,width。

layer {

top: "data"

top: "label"

name: "memory_data"

type: "MemoryData"

memory_data_param{

batch_size: 2 //每一次处理的数据个数

height: 100 //高度

width: 100 //宽度

channels: 1 //通道数

}

transform_param {

scale: 0.0078125

mean_file: "mean.proto"

mirror: false

}

}

 

3、数据来自于HDF5

HDF5_DATA

HDF5数据格式输入的类型。

输入参数:source,batch_size。

layer {

name: "data"

type: "HDF5Data"

top: "data"

top: "label"

hdf5_data_param {

source: "examples/hdf5_classification/data/train.txt"

batch_size: 10

}

}

 

4、数据来自于HDF5_OUTPUT

HDF5_OUTPUT

HDF5数据格式输出的类型。

输入参数:file_name。

 

5、数据来自于ImageData

ImageData

图像格式数据输入的类型。

输入参数:source,batch_size,(rand_skip),(shuffle),(new_height).(new_width)。

layer {

name: "data"

type: "ImageData"

top: "data"

top: "label"

transform_param {

mirror: false

crop_size: 227

mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"

}

image_data_param {

source: "examples/_temp/file_list.txt" //一个文本文件的名字,每一行给定一个图片文件的名称和标签(label)

batch_size: 50 //每一次处理的数据个数,即图片数

new_height: 256 //如果设置,则将图片进行resize

new_width: 256 //如果设置,则将图片进行resize

}

}

可选: 

rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。

  shuffle: 随机打乱顺序,默认值为false

 

注:其实还有两种WINDOW_DATA,DUMMY_DATA用于测试和预留的接口,不重要。

bneuron_layer

同样是数据的操作层,neuron_layer实现里有大量的激活函数,具有相同的bottom,top size. Caffe中大量的激活函数,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。

输入:n*c*h*w

输出:n*c*h*w

它们的父类都是NeuronLayer

Template<typename Dtype>

class NeuronLayer: public Layer<Dtype>

1、Sigmoid

对每个输入数据,利用sigmoid函数执行操作。这种层设置比较简单,没有额外的参数

Sigmoid

layer {

name: "encode1neuron"

bottom: "encode1"

top: "encode1neuron"

type: "Sigmoid"

}

 

2、ReLU

ReLU是目前使用最多的激活函数,主要因为其收敛更快,并且能保持同样效果。

ReLU

layer {

name: "relu1"

type: "ReLU"

bottom: "pool1"

top: "pool1"

}

注:可选参数negative_slope:默认为0. 对标准的ReLU函数进行变化,如果设置了这个值,那么数据为负数时,就不再设置为0,而是用原始数据乘以negative_slope。

 

3、TanH / Hyperbolic Tangent

利用双曲正切函数对数据进行变换。

TanH

layer {

name: "layer"

bottom: "in"

top: "out"

type: "TanH"

}

 

 

4、Absolute Value

求每个输入数据的绝对值。

AbsVal

layer {

name: "layer"

bottom: "in"

top: "out"

type: "AbsVal"

}

 

5、Power

对每个输入数据进行幂运算

Power

layer {

name: "layer"

bottom: "in"

top: "out"

type: "Power"

power_param {

power: 2 //默认为1

scale: 1 //默认为1

shift: 0 //默认为0

}

}

 

 

 

6、BNLL/binomial normal log likelihood的简称

BNLL

f(x)=log(1 + exp(x))

layer {

name: "layer"

bottom: "in"

top: "out"

type: “BNLL”

}

 

 

closs_layer

Loss层计算网络误差,一般放在最后一层,loss_layer.hpp头文件调用情况:

#include”caffe/blob.hpp”

#include”caffe/common.hpp”

#include”caffe/layer.hpp”

#include”caffe/neuron_layers.hpp”

#include”caffe/proto/caffe.pb.h”

调用neuron,是调用其中的函数计算loss,caffe实现了大量的loss function,它们的父类都是lossLayer.

Template<typename Dtype>

class LossLayer: public Layer<Dtype>

dcommon_layer

主要进行vision_layer的连接。

 

InnerProductLayer常常用作为全连接层

SplitLayer 用于一输入、多输出的场合(对blob)

FlattenLayer 将n*c*h*w变成向量的格式n*(c*h*w)*1*1

ConcatLayer 用于多输入、一输出的场合

SlienceLayer:用于一输入、多输出的场合(对layer)

 

evision_layer

视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层

1、Convolution层:就是卷积层,是卷积神经网络(CNN)的核心层。

Convolution

参数:num_output、stride、pad、weight_filler、bias_filler、bias_term、group

输入:n*c0*w0*h0

输出:n*c1*w1*h1

其中,c1就是参数中的num_output,生成的特征图个数

 w1=(w0+2*pad-kernel_size)/stride+1;

 h1=(h0+2*pad-kernel_size)/stride+1;

如果设置stride为1,前后两次卷积部分存在重叠。如果设置pad=(kernel_size-1)/2,则运算后,宽度和高度不变。

layer {

name: "conv1"

type: "Convolution"

bottom: "data"

top: "conv1"

param {

lr_mult: 1 }

param {

lr_mult: 2 //学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。

}

convolution_param {

num_output: 20 //卷积核(filter)的个数

kernel_size: 5 //卷积核的大小。如果卷积核的长和宽不等,需要用kernel_h和kernel_w分别设定.

stride: 1 //卷积核的步长,默认为1。也可以用stride_h和stride_w来设置

Pad: 0 //扩充边缘,默认为0,不扩充。 扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充了4个像素,这样卷积运算之后的特征图就不会变小。也可以通过pad_h和pad_w来分别设定。

weight_filler {

type: "xavier" //权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian

}

bias_filler {

type: "constant" //偏置项的初始化。一般设置为"constant",值全为0

}

}

}

注:可选参数:

bias_term: 是否开启偏置项,默认为true, 开启

      group: 分组,默认为1组。如果大于1,我们限制卷积的连接操作在一个子集内。如果我们根据图像的通道来分组,那么第i个输出分组只能与第i个输入分组进行连接。

2、Pooling层 :也叫池化层,为了减少运算量和数据维度而设置的一种层。

  pad: 和卷积层的pad的一样,进行边缘扩充。默认为0

 示例:

Pooling

参数: kernel_size、pool、pad、stride

pooling层的运算方法基本是和卷积层是一样的。

输入:n*c*w0*h0

输出:n*c*w1*h1

和卷积层的区别就是其中的c保持不变

 w1=(w0+2*pad-kernel_size)/stride+1;

 h1=(h0+2*pad-kernel_size)/stride+1;

如果设置stride为2,前后两次卷积部分不重叠。100*100的特征图池化后,变成50*50.

layer {

name: "pool1"

type: "Pooling"

bottom: "conv1"

top: "pool1"

pooling_param {

pool: MAX //pool: 池化方法,默认为MAX。目前可用的方法有MAX, AVE, 或STOCHASTIC

kernel_size: 3 //池化的核大小。也可以用kernel_h和kernel_w分别设定。

stride: 2 //池化的步长,默认为1。一般我们设置为2,即不重叠。也可以用stride_h和stride_w来设置

pad: 0 //和卷积层的pad的一样,进行边缘扩充。默认为0

}

}

  

3、Local Response Normalization (LRN)层

此层是对一个输入的局部区域进行归一化,达到“侧抑制”的效果。可去搜索AlexNet或GoogLenet,里面就用到了这个功能

LRN

参数(全部可选):local_size、alpha、beta、norm_region

归一化公式:对于每一个输入, 去除以 ,得到归一化后的输出

layers {

name: "norm1"

type: LRN

bottom: "pool1"

top: "norm1"

lrn_param {

local_size: 5 //默认为5。如果是跨通道LRN,则表示求和的通道数;如果是在通道内LRN,则表示求和的正方形区域长度。

alpha: 0.0001 //默认为1,归一化公式中的参数。

beta: 0.75 //默认为5,归一化公式中的参数。

}

}

注:可选参数 

norm_region: 默认为ACROSS_CHANNELS。有两个选择,ACROSS_CHANNELS表示在相邻的通道间求和归一化。WITHIN_CHANNEL表示在一个通道内部特定的区域内进行求和归一化。与前面的local_size参数对应。

 

4、im2col层

它先将一个大矩阵,重叠地划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。

caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值