幸福的烦恼:显卡算力太高而pytorch版本太低不支持

文章讲述了在使用RTX3090GPU时遇到的PyTorch兼容性警告,问题在于PyTorch支持的CUDA版本不包括RTX3090的CUDA能力sm_86。解决方案是升级CUDA至11.3及以上版本,并相应安装匹配的PyTorch。作者提供了检查GPU算力、PyTorch版本及CUDA版本的方法,并分享了安装步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NVIDIA GeForce RTX 3090 with CUDA capability sm_86 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.


The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.)
前些天发现了一个出色的人工智能学习网站。它的内容不仅深入浅出、易于理解,还充满了趣味性和幽默感,我觉得这对于喜欢探索新知识的朋友们来说会是一个不错的资源。
如果你对人工智能感兴趣,不妨 点击查看,看看能否为你的学习之旅增添一些乐趣和启发。

写在最前面

表面上是pytorch版本不够,实际是pytorch所依赖的cuda版本不够
在这里插入图片描述
在这里插入图片描述
总结:给RTX 3090配置cuda11以上版本即可

项目场景:

环境
RTX 3090 + linux
配置
torch-1.10.0 torchtext-0.11.0
cuda11.8


问题描述

UserWarning:
带有CUDA能力sm_86的NVIDIA GeForce RTX 3090与当前的PyTorch安装不兼容。
当前的PyTorch安装支持CUDA功能sm_37 sm_50 sm_60 sm_70。
如果您想在PyTorch中使用NVIDIA GeForce RTX 3090 GPU,请查看https://pytorch.org/get-started/locally/的说明

UserWarning: 
NVIDIA GeForce RTX 3090 with CUDA capability sm_86 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.
If you want to use the NVIDIA GeForce RTX 3090 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/

原因分析:

参考:https://blog.csdn.net/Paramagnetism/article/details/115221478

幸福的烦恼
CUDA capability sm_86:算力8.6
上面表面上是说PyTorch,实际上是PyTorch依赖的CUDA版本的问题
翻译一下就是:RTX 3090的算力是8.6,但是当前的PyTorch依赖的CUDA版本支持的算力只有3.7、5.0、6.0、7.0

算力7.0的显卡可以在支持最高算力7.5的CUDA版本下运行,但是算力7.5的显卡不可以在支持最高算力7.0的CUDA版本下运行
同理算力8.x的显卡不可以在支持最高算力7.x的CUDA版本下运行


解决方案:

参考:https://blog.csdn.net/weixin_41529093/article/details/122039547

查看gpu的算力(即nvidia的算力)

nvidia-smi
nvidia-smi -a

在这里插入图片描述nvidia官网的算力查询
https://developer.nvidia.cn/zh-cn/cuda-gpus

在这里插入图片描述

查看pytorch版本&支持的cuda算力

>>> import torch
>>> print(torch.__version__)

在这里插入图片描述

python
import torch
torch.cuda.get_arch_list()

[‘sm_37’, ‘sm_50’, ‘sm_60’, ‘sm_70’]
在这里插入图片描述

查看cuda版本

nvcc _V

在这里插入图片描述

查看对应版本

pytorch官网
https://pytorch.org/get-started/previous-versions/

上pytorch官网查看(安装)最新版本的cuda以及对应的pytorch

在这里插入图片描述

# CUDA 11.3
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge

在现有conda下安装报错

因此新建环境

conda create -n wyt_1.10 python==3.8

进入到环境下

conda activate wyt_1.10

然后安装,还是报错
换成pip版本

pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html

成功了

查看支持算力
在这里插入图片描述

如果你遇到Python版本过高的问题导致无法安装PyTorch,可以尝试以下几个步骤: 1. **降级Python**:如果Python版本太高PyTorch支持的最低版本低于这个,你可以考虑降低你的Python版本到兼容PyTorch的最高版本。在命令行中使用`python -m pip install --upgrade python`升级Python到适当版本,然后卸载当前版本并重新安装。 2. **安装适合的轮子包**:访问PyPI (Python Package Index) 或者Anaconda Cloud,查找针对你的目标Python版本PyTorch wheel文件,并使用pip下载安装。 ```bash pip install torch torchvision torchaudio -f https://download.pytorch.org/whl/torch_stable.html ``` 3. **安装Conda环境**:使用Conda创建一个新的环境,这样可以在特定版本的Python环境下安装PyTorch,不受系统全局Python版本的影响。例如: ```bash conda create -n pytorch_env python=3.7 conda activate pytorch_env conda install pytorch torchvision torchaudio ``` 4. **检查CUDA和cuDNN版本**:PyTorch需要对应的CUDA和cuDNN版本,确保它们与你的显卡驱动兼容。你可以在PyTorch官网找到对应版本的安装指南。 5. **更新系统库**:有时候,更新操作系统、编译器或相关依赖可能会解决一些兼容性问题。 如果以上步骤都无法解决问题,你可能需要查阅PyTorch的官方文档,或者在相关的技术论坛上寻求帮助。记得提供详细的信息,如所使用的Python和操作系统版本等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是Yu欸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值