更多资料获取
📚 个人网站:ipengtao.com
在构建交互式应用时,选择一个合适的库对于提高开发效率和用户体验至关重要。本文将深入探讨两个流行的Python库,Streamlit和Gradio,从特点、使用方法、定制化程度以及部署分享等方面进行详细对比,并通过丰富的示例代码帮助大家更好地理解它们的功能和优劣。
Streamlit详细介绍
1 特点
- 简单易用: Streamlit以最小化的代码实现最大的功能,对于快速搭建交互应用非常友好。
- 自动化部署: Streamlit支持一键部署到云端,例如Streamlit Sharing,使得分享和部署变得非常便捷。
- 组件丰富: 提供丰富的组件库,如按钮、滑块、图表等,以及对Markdown和HTML的支持,使用户可以灵活构建界面。
2 示例代码
import streamlit as st
# 创建一个简单的交互应用
st.title('Streamlit示例应用')
# 添加组件
user_input = st.text_input('请输入文本', '默认文本')
button_clicked = st.button('点击我')
# 显示结果
st.write(f'用户输入: {
user_input}')
st.write(f'按钮是否被点击: {
button_clicked}')
Gradio详细介绍
1 特点
- 多框架支持: Gradio对多种深度学习框架兼容,包括TensorFlow、PyTorch等,使其成为一个强大的模型部署工具。
- 即时预览: 提供即时预览功能,能够在构建过程中实时查看应用效果,有助于快速迭代。
- 快速迭代: Gradio专注于深度学习模型的快速迭代和参数调整,使开发者能够更专注于模型本身。
2 示例代码
import gradio