Capacity 论文阅读笔记5之Communication on the Grassmann manifold


[1] L. Zheng and D. N. C. Tse, ``Communication on the Grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel,’’ IEEE Trans. Inf. Theory, vol. 48, no. 2, pp. 359–383, Feb. 2002.

在 Lemma 1 (p361) 中有下面的公式
C coherent ( SNR ) ≥ K log ⁡ 2 SNR M + ∑ i = K ′ − K + 1 K ′ E [ log ⁡ 2 χ 2 i 2 ] C_{\textrm{coherent}} \left( {\textrm{SNR}} \right) \ge K\log _2 \frac{\textrm{SNR}}{M} + \sum\limits_{i = K' - K + 1}^{K'} {E\left[ {\log _2 \chi _{2i}^2 } \right]} Ccoherent(SNR)Klog2MSNR+i=KK+1KE[log2χ2i2]

这个公式的理解参考下述文献的(Eq 3)

[2] G. J. Foschini, ``Layered space–time architecture for wireless communication in a fading environment when using multi-element antennas,’’ AT & T Bell Labs. Tech. J., vol. 1, no. 2, pp. 41–59, 1996.

和下述文献(P319)的叙述

[3] G. J. Foschini and M. J. Ganz, ``On limits of wireless communications in a
fading environment when using multiple antennas,’’ Wirel. Personal Commun., vol. 6, pp. 311–335, 1998.

在下面的博士论文中(Theorem 3.4 公式 3.15),有相关的定理
[4] A. Edelman, “Eigenvalues and Condition Numbers of Random Matrices”, M.I.T. Doctoral Dissertation, Mathematics Department, 1989.

通过householder变换将矩阵变为准对角阵,根据盖尔圆定理,得到最小特征值的渐近值。该方法在下述论文中有所体现:
[5] Jack W. Silverstern, The Smallest Eigenvalue of a Large Dimensional wishart Matrix,The AnnaLs of Probability 1985, Vol. 13, No. 4, 1364-1368

以下内容主要来自【5】
Ger s ^ \hat \textrm s s^gorin’s theorem [Ger s ^ \hat \textrm s s^gorin (1931)]: Each eigenvalue of an n × n n \times n n×n complex matrix A = ( a i j ) A=(a_{ij}) A=(aij) lies in at least one of the disks
∣ z − a j j ∣ ≤ ∑ i ≠ j ∣ a i j ∣ , j = 1 , 2 , ⋯   , n , |z-a_{jj}|\le \sum_{i\neq j}|a_{ij}|, \quad j=1,2,\cdots,n, zajji=jaij,j=1,2,,n,
in the complex plane.
A x = z x ⇒ ∑ j = 1 n a i j x j = z x i , i = 1 , ⋯   , n Ax=zx \Rightarrow \sum_{j=1}^na_{ij}x_j=zx_i,\qquad i=1,\cdots,n Ax=zxj=1naijxj=zxi,i=1,,n
( z − a i i ) x i = ∑ j ≠ i a i j x j (z-a_{ii})x_i=\sum_{j\neq i}a_{ij}x_j (zaii)xi=j=iaijxj
如果 x i x_i xi 是向量 x x x 中绝对值最大的元素
∣ z − a i i ∣ ∣ x i ∣ ≤ ∑ j ≠ i ∣ a i j ∣ ∣ x i ∣ ⇒ ∣ z − a i i ∣ ≤ ∑ j ≠ i ∣ a i j ∣ |z-a_{ii}||x_i|\leq\sum_{j\neq i}|a_{ij}||x_i|\\ \Rightarrow|z-a_{ii}|\leq\sum_{j\neq i}|a_{ij}| zaiixij=iaijxizaiij=iaij
这说明特征值位于某个以 a i i a_{ii} aii 为圆心 ∑ j ≠ i ∣ a i j ∣ \sum_{j\neq i}|a_{ij}| j=iaij 为半径的圆内。

V s V_s Vs n × s n \times s n×s 矩阵,其元素为 i.i.d. N ( 0 , 1 ) N(0, 1) N(0,1) 随机变量。令 M s = ( 1 / s ) V V T M_s=(1/s)VV^T Ms=(1/s)VVT.
假设 s s s 足够大, s > n s>n s>n。 设 O s 1 O_s^1 Os1 s × s s \times s s×s 正交阵,它的第一列是 V s V_s Vs 第一行归一化的结果,其它各列与 V s V_s Vs 第一行正交。 V s 1 = V s O s 1 V_s^1=V_sO_s^1 Vs1=VsOs1 的第一行为 ( X s , 0 , ⋯   , 0 ) (X_s, 0,\cdots,0) (Xs,0,,0), X s 2 X_s^2 Xs2 χ 2 ( s ) \chi^2(s) χ2(s) 的变量。其它各行仍为 i.i.d. N ( 0 , 1 ) N(0, 1) N(0,1) 随机变量。
O n 1 O_n^1 On1 n × n n \times n n×n 正交阵,具有以下形式
( 1 0 ⋯ 0 0 ⋮ O n − 1 1 0 ) \begin{pmatrix}1& 0&\cdots&0\\ 0 &&&\\ \vdots&&O_{n-1}^1\\ 0&\end{pmatrix} 1000On110
O n − 1 1 O_{n-1}^1 On11 的第一行是 { V s 1 } j 1 , j = 2 : n \{V_s^1\}_{j1},j=2:n {Vs1}j1,j=2:n 所构成的向量( V s 1 V_s^1 Vs1 的第一列除 X s X_s Xs 外)归一化, O n − 1 1 O_{n-1}^1 On11 的其它行与 V s 1 V_s^1 Vs1相互独立。
O n 1 V s 1 = ( X s 0 ⋯ 0 Y n − 1 0 ⋮ W n − 1 , s − 1 0 ) O_n^1V_s^1=\begin{pmatrix}X_s& 0&\cdots&0\\ Y_{n-1} &&&\\0&\\ \vdots&&W_{n-1,s-1}\\ 0&\end{pmatrix} On1Vs1=XsYn1000Wn1,s10
O s 2 O_s^2 Os2 具有形式:
( 1 0 ⋯ 0 0 ⋮ O s − 1 2 0 ) \begin{pmatrix}1& 0&\cdots&0\\ 0 &&&\\ \vdots&&O_{s-1}^2\\ 0&\end{pmatrix} 1000Os120
O s − 1 2 O_{s-1}^2 Os12 的设计思路同 O s 1 O_s^1 Os1 第一行正交。设计 O n − 1 2 O_{n-1}^2 On12
继续这个过程得到
( X s 0 0 ⋯ 0 ⋯ 0 Y n − 1 X s − 1 0 ⋯ 0 ⋯ 0 0 Y n − 2 X s − 2 ⋯ 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ Y 1 X s − n + 1 ⋯ 0 ) \begin{pmatrix}X_s& 0&0&\cdots&0&\cdots&0\\ Y_{n-1} &X_{s-1}&0&\cdots&0&\cdots&0\\ 0&Y_{n-2} &X_{s-2}&\cdots&0&\cdots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&&\\ 0&0&\cdots&Y_1&X_{s-n+1}&\cdots&0\end{pmatrix} XsYn1000Xs1Yn2000Xs2Y1000Xsn+10000
M s = ( 1 / s ) V V T M_s=(1/s)VV^T Ms=(1/s)VVT 的第一行
1 s ( X s 2 , X s Y n − 1 , 0 , ⋯   , 0 ) {1\over s}(X_s^2, X_sY_{n-1},0,\cdots,0) s1(Xs2,XsYn1,0,,0)
最后一行
1 s ( 0 , ⋯   , 0 , X s − n + 2 Y 1 , X s − n + 1 2 + Y 1 2 ) {1\over s}(0,\cdots,0,X_{s-n+2}Y_1, X_{s-n+1}^2+Y_1^2) s1(0,,0Xsn+2Y1,Xsn+12+Y12)
其它各行 (第 j j j 行) 的非零元素
1 s ( X s − j + 1 Y n − j , X s − j 2 + Y n − j 2 , X s − j Y n − j + 1 ) {1\over s}(X_{s-j+1}Y_{n-j}, X_{s-j}^2+Y_{n-j}^2,X_{s-j}Y_{n-j+1}) s1(Xsj+1Ynj,Xsj2+Ynj2,XsjYnj+1)

λ min ⁡ ≥ min ⁡ 1 s [ X s 2 − X s Y n − 1 , X s − n + 1 2 + Y 1 2 − X s − n + 2 Y 1 , ( X s − j 2 + Y n − j 2 − X s − j + 1 Y n − j − X s − j Y n − j + 1 ) ] \lambda_{\min}\ge \min{1\over s}[X_s^2-X_sY_{n-1} , X_{s-n+1}^2+Y_1^2-X_{s-n+2}Y_1, \\(X_{s-j}^2+Y_{n-j}^2-X_{s-j+1}Y_{n-j}-X_{s-j}Y_{n-j+1})] λminmins1[Xs2XsYn1,Xsn+12+Y12Xsn+2Y1,(Xsj2+Ynj2Xsj+1YnjXsjYnj+1)]
【3】中关于 det ⁡ ( I n R + ( ρ / n T ) H H † ) \det(I_{n_R}+(\rho/n_T)HH^\dagger) det(InR+(ρ/nT)HH) 的近似。

根据前面的讨论 I n R + ( ρ / n T ) H H † I_{n_R}+(\rho/n_T)HH^\dagger InR+(ρ/nT)HH 具有以下的形式
( 1 + X s 2 X s Y n − 1 0 0 ⋯ 0 X s Y n − 1 1 + X s − 1 2 + Y n − 1 2 X s − 1 Y n 0 ⋯ 0 0 X s − 1 Y n − 2 1 + X s − 2 2 + Y n − 2 2 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ X s − n + 2 Y 1 1 + X s − n + 1 2 + Y 1 2 ⋯ ) \begin{pmatrix}1+X_s^2& X_sY_{n-1}& 0&0&\cdots&0\\ X_sY_{n-1}&1+X_{s-1}^2+Y_{n-1}^2 &X_{s-1}Y_{n}&0&\cdots&0\\ 0&X_{s-1}Y_{n-2} &1+X_{s-2}^2+Y_{n-2}^2&0&\cdots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&&\\ 0&0&\cdots&X_{s-n+2}Y_1&1+X_{s-n+1}^2+Y_1^2&\cdots\end{pmatrix} 1+Xs2XsYn100XsYn11+Xs12+Yn12Xs1Yn200Xs1Yn1+Xs22+Yn22000Xsn+2Y11+Xsn+12+Y12000
主对角线上的乘积分为两部分 L + Q L+Q L+Q
L = ∏ i = s − n + 1 s ( 1 + X i 2 ) L=\prod_{i=s-n+1}^s (1+X_i^2) L=i=sn+1s(1+Xi2)
Q Q Q 是其它部分。 Q Q Q里的正数项足以抵消在计算 det ⁡ \det det 时的负数项,例如左上角 2 × 2 2\times 2 2×2 部分
( 1 + X s 2 ) Y n − 1 − X s Y n − 1 X s Y n − 1 > 0 (1+X_s^2)Y_{n-1}-X_sY_{n-1}X_sY_{n-1}>0 (1+Xs2)Yn1XsYn1XsYn1>0
因此对于复数高斯矩阵 H H H
det ⁡ ( I n R + ( ρ / n T ) H H † ) ≥ ∏ k = n T − ( n R − 1 ) n T ( 1 + ( ρ / n T ) X 2 k 2 ) \det(I_{n_R}+(\rho/n_T)HH^\dagger)\ge \prod_{k=n_T-(n_R-1)}^{n_T} \left(1+(\rho/n_T)X_{2k}^2\right) det(InR+(ρ/nT)HH)k=nT(nR1)nT(1+(ρ/nT)X2k2)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
城市应急指挥系统是智慧城市建设的重要组成部分,旨在提高城市对突发事件的预防和处置能力。系统背景源于自然灾害和事故灾难频发,如汶川地震和日本大地震等,这些事件造成了巨大的人员伤亡和财产损失。随着城市化进程的加快,应急信息化建设面临信息资源分散、管理标准不统一等问题,需要通过统筹管理和技术创新来解决。 系统的设计思路是通过先进的技术手段,如物联网、射频识别、卫星定位等,构建一个具有强大信息感知和通信能力的网络和平台。这将促进不同部门和层次之间的信息共享、交流和整合,提高城市资源的利用效率,满足城市对各种信息的获取和使用需求。在“十二五”期间,应急信息化工作将依托这些技术,实现动态监控、风险管理、预警以及统一指挥调度。 应急指挥系统的建设目标是实现快速有效的应对各种突发事件,保障人民生命财产安全,减少社会危害和经济损失。系统将包括预测预警、模拟演练、辅助决策、态势分析等功能,以及应急值守、预案管理、GIS应用等基本应用。此外,还包括支撑平台的建设,如接警中心、视频会议、统一通信等基础设施。 系统的实施将涉及到应急网络建设、应急指挥、视频监控、卫星通信等多个方面。通过高度集成的系统,建立统一的信息接收和处理平台,实现多渠道接入和融合指挥调度。此外,还包括应急指挥中心基础平台建设、固定和移动应急指挥通信系统建设,以及应急队伍建设,确保能够迅速响应并有效处置各类突发事件。 项目的意义在于,它不仅是提升灾害监测预报水平和预警能力的重要科技支撑,也是实现预防和减轻重大灾害和事故损失的关键。通过实施城市应急指挥系统,可以加强社会管理和公共服务,构建和谐社会,为打造平安城市提供坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值