拟合算法——数学建模清风笔记

本文探讨了拟合问题的概念,特别是最小二乘法在数据拟合中的应用,包括插值与拟合的区别、线性函数的拟合以及MATLAB中如何通过clear,clc和CurveFitting工具箱进行最小二乘拟合。还介绍了如何评价拟合优度和处理常见问题如收敛问题。
摘要由CSDN通过智能技术生成

拟合问题的目标是寻求一个函数(曲线),使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最小化损失函数)

插值和拟合的区别

与插值问题不同,在拟合问题中不需要曲线一定经过给定的点。

插值算法中,得到的多项式f(x)要经过所有样本点。但是如果样本点太多,那么这个多项式次数过高,会造成龙格现象。

尽管我们可以选择分段的方法避免这种现象,但是更多时候我们更倾向于得到一个确定的曲线,尽管这条曲线不能经过每一个样本点,但只要保证误差足够小即可,这就是拟合的思想。(拟合的结果是得到一个确定的曲线,尽可能接近所有样本点)

最小二乘法

原理

设样本点为(xi,yi),i = 1,2,...,n 我们设置的拟合曲线为y = kx + b ,k和b取何值时,样本点和拟合曲线最接近

第一种定义有绝对值,不容易求导,因此计算比较复杂。所以我们往往使用第二种定义,这也正是最小二乘的思想。

为什么不用四次方?
(1)避免极端数据对拟合曲线的影响。
(2)最小二乘法得到的结果和MLE极大似然估计一致。

不用奇数次方的原因:误差会正负相消。

评价拟合好坏:拟合优度

SSE可能受到量纲的影响,所以单纯判断一个函数的拟合不能只看SSE,但比较两个函数拟合好坏时可以只看SSE

SSE相差不大时采用简单的模型

注:我们这里说的线性函数是指对参数为线性(线性于参数)。y = a + bx2也是线性函数

在函数中,参数仅以一次方出现,且不能乘以或除以其他任何的参数&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沐尘.affluent

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值