理解一维卷积

 根据我个人的经验和偏好,理解数学概念的最好方式之一就是赋予其物理意义。把f(t)看做输入,g(t)看做系统的衰减系数,卷积就比较好理解了。

在某一时刻n,该系统对f(n)的响应值就是f(n)xg(0),但系统的总输出C(n),不仅跟当前输入的f(n)有关,还跟以往所有的输入f(0)~f(n-1)都有关,按上图的衰减函数特性,越久远的输入对当前的输出值贡献就越小。

很容易得出,C(n) = f(0)xg(n) + f(1)xg(n-1) + f(2)xg(n-2) + ... f(n-1)xg(1) + f(n)xg(0),也就是上面的离散卷积公式。

比如,在n=5时刻,系统的输出C(5) = f(0)xg(5) + f(1)xg(4) + ... + f(5)xg(0) = 10x0.3 + 15x0.4 + 4x0.6 + 12x0.8 + 10x0.9 + 17x1 = 47,可以看到f(t)*g(t)是一个交叉相乘再累加的过程。

我们继续看n=6时刻,C(6) = f(0)xg(6) + f(1)xg(5) + ... + f(6)xg(0),n=7时刻,C(7) = f(0)xg(7) + f(1)xg(6) + ... + f(7)xg(0),以此类推。

但是上图看着实在太别扭,对g(t)做一下变形,让卷积过程看起来更自然,如下图示。

g(-t) = g(t),两者互为镜像。接下来卷积就变成g(-t)的滑动对齐f(t)然后乘加的过程了。可以这么理解,镜像翻转和滑动体现了“卷”,而乘加体现了“积”。

C(5):

C(6):

C(7):

为了形象地展示卷积过程,把f(t)和g(t)做成一维滑窗的样子推演一遍。

再次说明,f(t)是信号输入,g(t)是系统响应,g(-t)是镜像响应函数。上图中,f(t)只在0~4有输入值,其他时刻可以认为都是0;而g(t)只在0~2有值,其他时刻都是0,这说明系统的“记忆”只有两拍,也就是说,某一时刻系统的输出只与当前输入,以及上次和上上次输入有关,这是网上很多博主没有提到的,然而理解这一点非常重要。

上图是一维full卷积过程,也就是f(t)输入g(t)系统后,在输出端得到什么输出。C(0) = f(0)xg(0),即0时刻系统输出只跟0时刻输入有关,因为在此之前的输入都是0;C(2) = f(0)xg(2) + f(1)xg(1) + f(2)xg(0),即2时刻系统输出是由0,1,2三个时刻的输入叠加而来的;C(6) = f(4)xg(2),6时刻虽然没有输入了,但是因为系统有两拍的“记忆”效应,所以此时仍残留有4时刻输入的影响。系统的“记忆”效应造成了输出比输入要长。

我们可以把f(t)叫做Feature(特征),把g(t)叫做Kernel(卷积核),那么有以下知识点:

1)卷积核的大小定义了卷积的视野,也就是系统的“记忆”有多长;

2)除了上面例子中的full卷积,还有其他类型的卷积方式,它们的区别包括步长(stride)和卷积范围(scope)。

有了一维卷积的基本概念,理解二维卷积也就变得容易了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
一维卷积中,步幅(stride)是指滑动窗口在进行卷积操作时每次移动的步长。它决定了输出特征图的尺寸和感受野的大小。 具体来说,步幅为1表示窗口每次移动一个元素,步幅为2表示窗口每次移动两个元素,以此类推。较大的步幅会导致输出特征图尺寸减小,因为窗口在输入序列上跳跃式地移动,从而减少了输出的位置。相反,较小的步幅会导致输出特征图尺寸增大,因为窗口在输入序列上以较小的间隔移动。 在选择步幅时,需要考虑以下几点: 1. 特征图尺寸:较大的步幅会导致特征图尺寸减小,这可能会损失一些细节信息。因此,根据任务需求和输入数据的特点,需要权衡特征图尺寸和感兴趣的特征细节。 2. 计算效率:较大的步幅可以减少计算量,因为输出特征图的尺寸减小了。这在大型数据和深层网络中特别重要,可以加快训练和推断的速度。 3. 感受野大小:步幅的选择还会影响感受野的大小。感受野是指输入序列中一个位置上的输出特征值受到的输入序列上的局部信息范围。较大的步幅会导致感受野减小,因为窗口在输入序列上跳跃式地移动,只能捕捉到较小范围的局部信息。 综上所述,步幅在一维卷积中起到控制输出特征图尺寸、计算效率和感受野大小的作用。选择适当的步幅可以根据具体任务要求和情况来平衡这些因素。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值