一片晶圆(wafer)能切割出多少颗芯片(die)呢?

晶圆是圆的(因为硅锭是圆柱形的),而芯片是方形的,所以两者不能按照面积之比来计算切割数量。通用的计算公式是这样的:
Q = [(wafer_area / die_area) - Pi * (wafer_diam / die_diag)] * yield
Q: 切割数量
wafer_area: 晶圆面积
die_area: 芯片面积
wafer_diam: 晶圆直径
die_diag: 芯片对角线长度
yield:良率
举个例子,12寸晶圆能切割出多少颗20 mm^2的芯片呢?
12寸指的是晶圆直径,约为300mm,但是需要刨去3mm的wafer edge exclusion,所以有效直径为294mm。根据圆面积计算公式wafer_area = Pi * r^2,得到晶圆面积为67887 mm^2.
假设芯片是正方形的,那么对角线长度为 *
= 6.325mm,再假设良率为95%,最后带入公式计算:
Q = [(67887 / 20) - Pi * (294 / 6.325)] * 95% = 3086
我们发现,公式中的减数项跟芯片对角线成反比,同样面积下,越窄长的长方形,其对角线也就越长。比如,上面的例子中我们假设芯片是边长为2mm*10mm的长方形,其对角线为10.2mm,带入公式计算得到Q = 3139,比正方形多切出来53颗芯片!有这样的好事?
答案显然是否定的。且不说窄长的形状不利于布局布线,单就foundry来说,也会给出一定的长宽比约束规则,在满足其规则的前提下才能得到较高的良率(且还能获得价格上的折扣),而如果不满足其规则,就算真的多切几颗出来,成本也不会有优势。