目标检测中的损失函数(一) IOU,GIOU

本文介绍了目标检测中的两种损失函数——IOU和GIOU。IOU衡量预测框与目标框的交并比,但无法判断相对位置。GIOU在IOU基础上考虑了相对位置,其损失公式揭示了它对预测框形状的偏好,更倾向于避免对角线拟合。
摘要由CSDN通过智能技术生成

学习记录,如有错误请指出,感谢大家的指导建议。

IOU

IOU计算的是预测框和目标框的交并比

IOU = \frac{A\ \bigcap B }{A\ \bigcup B},\ \ \ \ \ \ \ \ Loss =1-IOU

如上图所示,蓝色部分为预测框,红色部分为目标框,黄色部分就是两者的交集。

IOU的局限性在于无法判别预测框的相对位置,同样的IOU数值结果能够对应无数个位置的预测框,而不同的任务可能会对不同的位置有着不同的喜好,这种情况下IOU无法给出一个判别。

GIOU

相比于IOU, GIOU引入了相对位置的考量,但这并不代表GIOU就优于IOU。

蓝色

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值