目标检测损失函数(二)DIOU、CIOU、ALPHA IOU

本文探讨了目标检测中的DIOU、CIOU和ALPHA IOU损失函数,这些函数旨在优化预测框与目标框的匹配,尤其是在考虑框的中心距离、长宽比和收敛速度方面。内容引用了B站UP主的图例和知乎的解释,阐述了这些损失函数如何改善目标检测的稳定性和准确性。
摘要由CSDN通过智能技术生成

个人学习记录,如有错误请指出,感谢大家的指导建议。

在前文中讨论了IOU与GIOU。

目标检测中的损失函数(一) IOU,GIOU_黑野桥的博客-CSDN博客

对比起前二者,DIOU,CIOU和ALPHA IOU相对较为复杂。本文的图例来自 B站UP主 自由时有船

常见面试问题4:损失函数DIOU、CIOU、阿尔法IOU_哔哩哔哩_bilibili

     

对比上面两幅图,在IOU和GIOU的背景下,如果两幅图的目标框和预测框的大小都是相同的,那么二者的计算结果也都是相同的。但无论从感官上还是实际效果来看,第二幅图的检测结果都更加稳定且准确。因此需要找到新的损失函数能够衡量这种情况。

DIOU

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值