张正友平面标定法:简单理解

本文详细介绍了张正友标定法的必要性、原理,包括如何通过求解内参矩阵和外参矩阵来建立相机成像模型,矫正畸变。步骤涉及求解单应性矩阵、内参矩阵和外参矩阵的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考文章:

相机标定之张正友标定法数学原理详解(含python源码) - 知乎【关于问题】 由于问题过多,不一一回复,望理解。 涉及到撰写错误的,我会认真推导并回复。涉及到一些基本概念或者定义的,评论区几句话难以说清楚,可以私戳我。涉及到代码输出值的,建议查询opencv的docs。 一…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/94244568【一文弄懂】张正友标定法-完整学习笔记-从原理到实战_hehedadaq的博客-CSDN博客张正友标定法-完整学习笔记-从原理到实战文章目录张正友标定法-完整学习笔记-从原理到实战(零)前言:1 为什么需要标定?2 相机标定的已知条件和待求解是什么?标定前的已知条件:待求信息:(一)概念介绍和成像几何模型1.张正友标定处于什么水平,为啥提到相机标定,就不得不提他张博士的方法?2 简单介绍张博士----张氏标定法发明人3【WHY:为什么要进行相机标定?】4【HOW:相机标定的原理】在这里..._张正友标定法-完整学习笔记-从原理到实战https://blog.csdn.net/hehedadaq/article/details/105763241?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522169518656516800227425227%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=169518656516800227425227&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-105763241-null-null.142%5Ev94%5EchatsearchT3_1&utm_term=%E5%BC%A0%E6%AD%A3%E5%8F%8B%E6%A0%87%E5%AE%9A%E6%B3%95-%E5%AE%8C%E6%95%B4%E5%AD%A6%E4%B9%A0%E7%AC%94%E8%AE%B0-%E4%BB%8E%E5%8E%9F%E7%90%86%E5%88%B0%E5%AE%9E%E6%88%98&spm=1018.2226.3001.4187经学习后,我对张正友平面标定法简单理解如下:

一、为什么要进行相机标定?

相机标定的最终目的建立二维像素与对应的三维实物的关系直接目的是建立相机成像几何模型并矫正透镜畸变,求解相机的内参、外参和畸变参数,张正友平面标定法为其中一种求解方法。

二、张正友平面标定法思路

第一步:求解内参矩阵与外参矩阵的积

注意:此时已知像素坐标(u、v)和实物坐标(U、V)(棋盘格是设定好的,包括假设世界坐标系原点和格子边长)

将世界坐标系固定于棋盘格上,则棋盘格上任一点的物理坐标 W=0,因此,原单点无畸变的成像模型可以化为下式:

H即为内参矩阵和外参矩阵的积(单应性矩阵,“单应性”是指当单应性矩阵确定后,已知实物坐标可唯一确定像素坐标,但已知像素坐标不能唯一确定实物坐标,原因是缺乏尺度因子)

x'、y'即为u、v,x、y即为X、Y(摘抄,不带了编辑公式了)

第二步:求解内参矩阵

 注意:此时已知像素坐标、实物坐标、内参矩阵和外参矩阵的积H(单应性阵H)

先求内参是因为更容易,因为每张图片的内参都是固定的,而外参是变化的),得到内参后,那张标定图片的外参也就随之解出了。

求解内参思路是利用旋转向量的约束关系:旋转矩阵的每一列都是彼此正交,且模为1

 

第三步:求解外参矩阵

注意:此时已知像素坐标、实物坐标、内参矩阵和外参矩阵的积H(单应性阵H)、内参。

直接求就完了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值