深入理解PyTorch:基础语法与构建深度学习模型步骤

在本文中,我们将通过示例代码,深入探讨PyTorch的几个核心概念:自动微分、数据加载、自定义数据集、预训练模型的使用、模型保存与加载。同时了解关于pytorch的基础语法以及神经网络构建与训练流程。

一、环境设置

首先,确保安装了PyTorch和torchvision。如果未安装,可以通过以下命令进行安装:

pip install torch torchvision

二、基础语法

PyTorch是一个流行的开源机器学习库,用于计算机视觉和自然语言处理等应用。以下是PyTorch的一些基础语法,它们是开始使用PyTorch时需要了解的关键概念:

1. 导入PyTorch

import torch

2. 创建张量(Tensors)

张量是PyTorch中的基本数据结构。

# 创建一个标量(0维张量)
scalar = torch.tensor(3.5)

# 创建一个向量(1维张量)
vector = torch.tensor([1.0, 2.0, 3.0])

# 创建一个矩阵(2维张量)
matrix = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 创建一个3维张量
tensor = torch.tensor([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]])

3. 张量操作

# 形状
print(tensor.shape)

# 逐元素加法
add_result = tensor + vector

# 矩阵乘法
product = torch.matmul(matrix, matrix)

# 转置
transposed = matrix.t()

# 索引
element = matrix[0, 1]  # 获取第一个矩阵的第二列元素

4. 自动微分(Autograd)

PyTorch使用自动微分机制来计算梯度。

x = torch.tensor([1.0, 2.0], requires_grad=True)
y = x ** 2
y.backward()  # 计算梯度
print(x.grad)  # 输出梯度

5. 定义模型

使用torch.nn模块可以定义神经网络模型。

import torch.nn as nn

model = nn.Sequential(
    nn.Linear(2, 3),
    nn.ReLU(),
    nn.Linear(3, 1)
)

6. 损失函数

使用torch.nn.functional模块可以定义损失函数。

import torch.nn.functional as F

loss_fn = nn.MSELoss()
output = model(input_tensor)
loss = loss_fn(output, target_tensor)

7. 优化器

优化器用于更新模型的权重。

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

8. 训练循环

训练模型通常涉及前向传播、损失计算、反向传播和参数更新。

for epoch in range(num_epochs):
    optimizer.zero_grad()  # 清除之前的梯度
    output = model(input_tensor)
    loss = loss_fn(output, target_tensor)
    loss.backward()  # 反向传播
    optimizer.step()  # 更新参数

9. 数据加载

使用DataLoader可以方便地加载数据集。

from torch.utils.data import DataLoader, TensorDataset

data = TensorDataset(tensor_a, tensor_b)
data_loader = DataLoader(data, batch_size=32, shuffle=True)

10. 保存和加载模型

保存和加载模型通常使用torch.savetorch.load

# 保存整个模型
torch.save(model.state_dict(), 'model.pth')

# 加载模型参数
model.load_state_dict(torch.load('model.pth'))

这些基础语法为使用PyTorch提供了一个起点。随着对PyTorch的进一步学习,你将能够构建更复杂的模型和训练流程。

三、一般深度学习模型的构建和训练步骤

使用PyTorch进行深度学习模型的训练和测试通常遵循以下步骤:

1. 定义模型

首先,你需要定义你的模型。这通常涉及创建一个继承自nn.Module的类,并在其中初始化层和定义前向传播逻辑。

import torch.nn as nn

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_features, out_features)

    def forward(self, x):
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        return x

model = MyModel()

2. 定义损失函数和优化器

选择一个损失函数来评估模型的预测与真实标签之间的差异,并选择一个优化器来更新模型的权重。

loss_fn = nn.CrossEntropyLoss()  # 用于多分类问题
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)  # 使用Adam优化器

3. 数据加载

使用DataLoader来加载训练数据和测试数据,它可以帮助进行批量加载、打乱数据等。

from torch.utils.data import DataLoader, TensorDataset

train_data = TensorDataset(torch.randn(batch_size, features), torch.randint(0, classes, (batch_size,)))
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)

test_data = TensorDataset(torch.randn(batch_size, features), torch.randint(0, classes, (batch_size,)))
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False)

4. 训练模型

训练模型通常涉及多个训练周期(epochs),在每个epoch中遍历整个数据集,执行前向传播、损失计算、反向传播和参数更新。

num_epochs = 10

for epoch in range(num_epochs):
    for inputs, labels in train_loader:
        optimizer.zero_grad()  # 清除之前的梯度
        outputs = model(inputs)  # 前向传播
        loss = loss_fn(outputs, labels)  # 计算损失
        loss.backward()  # 反向传播
        optimizer.step()  # 更新参数
    print(f'Epoch {epoch+1}, Loss: {loss.item()}')

5. 测试模型

在测试阶段,你需要评估模型在测试集上的性能。测试集应该从未在训练过程中使用过。

model.eval()  # 将模型设置为评估模式
with torch.no_grad():  # 关闭梯度计算
    correct = 0
    total = 0
    for inputs, labels in test_loader:
        outputs = model(inputs)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

accuracy = 100 * correct / total
print(f'Accuracy: {accuracy}%')

6. 保存和加载模型

训练完成后,你可以保存模型的参数,并在以后重新加载它们。

# 保存模型参数
torch.save(model.state_dict(), 'model_parameters.pth')

# 加载模型参数
model.load_state_dict(torch.load('model_parameters.pth'))

7. 微调和迁移学习

如果你需要微调模型或使用迁移学习,你可以冻结基础层的权重并只训练顶层。

for param in model.base_model.parameters():
    param.requires_grad = False

# 替换或添加新的层进行微调
model.new_fc_layer = nn.Linear(modified_features, out_features)

这些步骤提供了一个从训练到测试的完整流程,涵盖了使用PyTorch进行深度学习的基本方面。根据具体的应用和数据集,可能需要对这些步骤进行调整和优化。

四、实战示例

1. 自动微分基础

自动微分是深度学习框架的基石,它允许我们自动计算导数,是训练神经网络的关键。PyTorch中的autograd功能正是为此设计。

1.1 基础示例1

在第一个示例中,我们创建了三个需要梯度的张量xwb,并构建了一个简单的计算图y = w * x + b。通过调用.backward()方法,我们计算了y相对于这些张量的梯度,并打印出来。

import torch
import torch.nn as nn

x = torch.tensor(1., requires_grad=True)
w = torch.tensor(2., requires_grad=True)
b = torch.tensor(3., requires_grad=True)

y = w * x + b
y.backward()

print(x.grad)  # x.grad = 2
print(w.grad)  # w.grad = 1
print(b.grad)  # b.grad = 1
1.2 基础示例2

第二个示例展示了如何在一个全连接层中使用自动微分。我们定义了一个损失函数和优化器,进行了前向传播、损失计算、反向传播,并执行了一个梯度下降步骤来更新模型权重。

x = torch.randn(10, 3)
y = torch.randn(10, 2)

linear = nn.Linear(3, 2)
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(linear.parameters(), lr=0.01)

pred = linear(x)
loss = criterion(pred, y)
loss.backward()

optimizer.step()

print('loss after 1 step optimization: ', loss.item())

2. NumPy与PyTorch的互操作性

PyTorch与NumPy之间的无缝互操作性使得数据在两者之间的转换变得非常容易。

import numpy as np

x = np.array([[1, 2], [3, 4]])
y = torch.from_numpy(x)
z = y.numpy()

3. 数据加载与处理

3.1 数据加载

PyTorch提供了强大的数据加载工具,可以轻松地下载、加载和预处理数据。

import torchvision
import torchvision.transforms as transforms

train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                                             train=True, 
                                             transform=transforms.ToTensor(),
                                             download=True)

image, label = train_dataset[0]
print(image.size())
print(label)

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=64, 
                                           shuffle=True)
3.2 自定义数据集

为了使用自己的数据集,我们需要定义一个继承自torch.utils.data.Dataset的类。

class CustomDataset(torch.utils.data.Dataset):
    def __init__(self):
        # TODO: Initialize file paths or a list of file names.
        pass
    def __getitem__(self, index):
        # TODO: Read one data from file and preprocess.
        pass
    def __len__(self):
        return 0 

custom_dataset = CustomDataset()
train_loader = torch.utils.data.DataLoader(dataset=custom_dataset,
                                           batch_size=64, 
                                           shuffle=True)

4. 预训练模型

预训练模型是迁移学习的基础,允许我们将在大型数据集上学到的特征应用到新的任务上。

resnet = torchvision.models.resnet18(pretrained=True)
for param in resnet.parameters():
    param.requires_grad = False

resnet.fc = nn.Linear(resnet.fc.in_features, 100)
images = torch.randn(64, 3, 224, 224)
outputs = resnet(images)
print(outputs.size())

5. 模型保存与加载

在训练过程中,保存和加载模型是一个常见需求。

torch.save(resnet, 'model.ckpt')
model = torch.load('model.ckpt')

# Or save and load only the model parameters
torch.save(resnet.state_dict(), 'params.ckpt')
resnet.load_state_dict(torch.load('params.ckpt'))

6.完整代码

import torch 
import torchvision
import torch.nn as nn
import numpy as np
import torchvision.transforms as transforms


# ================================================================== #
#                         Table of Contents                          #
# ================================================================== #

# 1. Basic autograd example 1               (Line 25 to 39)
# 2. Basic autograd example 2               (Line 46 to 83)
# 3. Loading data from numpy                (Line 90 to 97)
# 4. Input pipline                          (Line 104 to 129)
# 5. Input pipline for custom dataset       (Line 136 to 156)
# 6. Pretrained model                       (Line 163 to 176)
# 7. Save and load model                    (Line 183 to 189) 


# ================================================================== #
#                     1. Basic autograd example 1                    #
# ================================================================== #

# Create tensors.
x = torch.tensor(1., requires_grad=True)
w = torch.tensor(2., requires_grad=True)
b = torch.tensor(3., requires_grad=True)

# Build a computational graph.
y = w * x + b    # y = 2 * x + 3

# Compute gradients.
y.backward()

# Print out the gradients.
print(x.grad)    # x.grad = 2 
print(w.grad)    # w.grad = 1 
print(b.grad)    # b.grad = 1 


# ================================================================== #
#                    2. Basic autograd example 2                     #
# ================================================================== #

# Create tensors of shape (10, 3) and (10, 2).
x = torch.randn(10, 3)
y = torch.randn(10, 2)

# Build a fully connected layer.
linear = nn.Linear(3, 2)
print ('w: ', linear.weight)
print ('b: ', linear.bias)

# Build loss function and optimizer.
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(linear.parameters(), lr=0.01)

# Forward pass.
pred = linear(x)

# Compute loss.
loss = criterion(pred, y)
print('loss: ', loss.item())

# Backward pass.
loss.backward()

# Print out the gradients.
print ('dL/dw: ', linear.weight.grad) 
print ('dL/db: ', linear.bias.grad)

# 1-step gradient descent.
optimizer.step()

# You can also perform gradient descent at the low level.
# linear.weight.data.sub_(0.01 * linear.weight.grad.data)
# linear.bias.data.sub_(0.01 * linear.bias.grad.data)

# Print out the loss after 1-step gradient descent.
pred = linear(x)
loss = criterion(pred, y)
print('loss after 1 step optimization: ', loss.item())


# ================================================================== #
#                     3. Loading data from numpy                     #
# ================================================================== #

# Create a numpy array.
x = np.array([[1, 2], [3, 4]])

# Convert the numpy array to a torch tensor.
y = torch.from_numpy(x)

# Convert the torch tensor to a numpy array.
z = y.numpy()


# ================================================================== #
#                         4. Input pipeline                           #
# ================================================================== #

# Download and construct CIFAR-10 dataset.
train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                                             train=True, 
                                             transform=transforms.ToTensor(),
                                             download=True)

# Fetch one data pair (read data from disk).
image, label = train_dataset[0]
print (image.size())
print (label)

# Data loader (this provides queues and threads in a very simple way).
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=64, 
                                           shuffle=True)

# When iteration starts, queue and thread start to load data from files.
data_iter = iter(train_loader)

# Mini-batch images and labels.
images, labels = data_iter.next()

# Actual usage of the data loader is as below.
for images, labels in train_loader:
    # Training code should be written here.
    pass


# ================================================================== #
#                5. Input pipeline for custom dataset                 #
# ================================================================== #

# You should build your custom dataset as below.
class CustomDataset(torch.utils.data.Dataset):
    def __init__(self):
        # TODO
        # 1. Initialize file paths or a list of file names. 
        pass
    def __getitem__(self, index):
        # TODO
        # 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).
        # 2. Preprocess the data (e.g. torchvision.Transform).
        # 3. Return a data pair (e.g. image and label).
        pass
    def __len__(self):
        # You should change 0 to the total size of your dataset.
        return 0 

# You can then use the prebuilt data loader. 
custom_dataset = CustomDataset()
train_loader = torch.utils.data.DataLoader(dataset=custom_dataset,
                                           batch_size=64, 
                                           shuffle=True)


# ================================================================== #
#                        6. Pretrained model                         #
# ================================================================== #

# Download and load the pretrained ResNet-18.
resnet = torchvision.models.resnet18(pretrained=True)

# If you want to finetune only the top layer of the model, set as below.
for param in resnet.parameters():
    param.requires_grad = False

# Replace the top layer for finetuning.
resnet.fc = nn.Linear(resnet.fc.in_features, 100)  # 100 is an example.

# Forward pass.
images = torch.randn(64, 3, 224, 224)
outputs = resnet(images)
print (outputs.size())     # (64, 100)


# ================================================================== #
#                      7. Save and load the model                    #
# ================================================================== #

# Save and load the entire model.
torch.save(resnet, 'model.ckpt')
model = torch.load('model.ckpt')

# Save and load only the model parameters (recommended).
torch.save(resnet.state_dict(), 'params.ckpt')
resnet.load_state_dict(torch.load('params.ckpt'))

结论

通过这段示例代码,我们可以看到PyTorch在自动微分、数据处理、模型加载与保存方面的强大能力。这些功能不仅使得PyTorch成为一个灵活且功能丰富的深度学习工具,也极大地简化了机器学习研究和开发的工作流程。随着技术的不断发展,PyTorch将继续作为深度学习领域的一个关键驱动力。

  • 11
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值