PyTorch--卷积神经网络(CNN)模型实现手写数字识别

前言

今天要介绍的这段代码是一个使用PyTorch框架实现的卷积神经网络(CNN)模型,用于对MNIST数据集进行分类的示例。MNIST数据集是手写数字识别领域的一个标准数据集,包含0到9的灰度图像。

代码的主要组成部分如下:

  1. 导入必要的库:导入PyTorch、PyTorch神经网络模块、torchvision(用于处理图像数据集)和transforms(用于图像预处理)。

  2. 设备配置:设置模型运行的设备,优先使用GPU(如果可用),否则使用CPU。

  3. 超参数设置:定义了训练迭代的轮数(num_epochs)、类别数(num_classes)、批次大小(batch_size)和学习率(learning_rate)。

  4. 加载MNIST数据集:使用torchvision.datasets.MNIST加载MNIST训练集和测试集,并应用transforms.ToTensor将图像转换为张量。

  5. 创建数据加载器:使用torch.utils.data.DataLoader创建训练和测试数据的加载器,以便在训练和测试过程中批量加载数据。

  6. 定义卷积神经网络模型:定义了一个名为ConvNet的类,继承自nn.Module。模型包含两个卷积层(每层后接批量归一化和ReLU激活函数),以及一个全连接层。

  7. 实例化模型并移动到设备:创建ConvNet模型的实例,并将其移动到之前设置的设备上。

  8. 定义损失函数和优化器:使用nn.CrossEntropyLoss作为损失函数,torch.optim.Adam作为优化器。

  9. 训练模型:进行多个epoch的训练,每个epoch中对数据集进行遍历,执行前向传播、损失计算、反向传播和参数更新。

  10. 测试模型:在测试阶段,将模型设置为评估模式,并禁用梯度计算以提高效率,然后计算模型在测试集上的准确率。

  11. 保存模型:使用torch.save保存训练后的模型参数到文件,以便将来可以重新加载和使用模型。

完整代码

import torch 
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms


# Device configuration
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# Hyper parameters
num_epochs = 5
num_classes = 10
batch_size = 100
learning_rate = 0.001

# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data/',
                                           train=True, 
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='../../data/',
                                          train=False, 
                                          transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size, 
                                          shuffle=False)

# Convolutional neural network (two convolutional layers)
class ConvNet(nn.Module):
    def __init__(self, num_classes=10):
        super(ConvNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.fc = nn.Linear(7*7*32, num_classes)
        
    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)
        return out

model = ConvNet(num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# Test the model
model.eval()  # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')

代码解析

1. 导入必要的库
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
  • 导入PyTorch及其神经网络(nn)、计算机视觉(vision)模块和变换(transforms)模块。
2. 设备配置
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
  • 使用torch.device设置模型运行的设备,优先使用GPU(如果可用)。
3. 超参数设置
num_epochs = 5
num_classes = 10
batch_size = 100
learning_rate = 0.001
  • 定义训练迭代的轮数(num_epochs),输出类别的数量(num_classes),每个批次的样本数(batch_size),以及优化算法的学习率(learning_rate)。
4. 加载MNIST数据集
train_dataset = torchvision.datasets.MNIST(root='../../data/',
                                           train=True, 
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='../../data/',
                                          train=False, 
                                          transform=transforms.ToTensor())
  • 使用torchvision.datasets.MNIST加载MNIST数据集,包括训练集和测试集。transforms.ToTensor将图像数据转换为张量。
5. 创建数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size, 
                                          shuffle=False)
  • 使用torch.utils.data.DataLoader创建数据加载器,用于批量加载数据,并在训练时打乱数据顺序。
6. 定义卷积神经网络模型
class ConvNet(nn.Module):
    def __init__(self, num_classes=10):
        super(ConvNet, self).__init__()
        # 定义模型层
        pass
    
    def forward(self, x):
        # 定义前向传播过程
        pass
  • 定义一个名为ConvNet的类,继承自nn.Module。在__init__中初始化模型的层,在forward中定义前向传播逻辑。
7. 实例化模型并移动到设备
model = ConvNet(num_classes).to(device)
  • 创建ConvNet模型的实例,并使用.to(device)将其移动到之前设置的设备上。
8. 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
  • 定义nn.CrossEntropyLoss作为损失函数,使用torch.optim.Adam作为优化器。
9. 训练模型
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        # 训练过程
        pass
  • 遍历所有epoch和batch,执行训练过程,包括数据预处理、前向传播、损失计算、反向传播和参数更新。
10. 测试模型
model.eval()  # eval mode
with torch.no_grad():
    # 测试过程
    pass
  • 将模型设置为评估模式,禁用梯度计算,并执行测试过程,计算模型的准确率。
11. 保存模型
torch.save(model.state_dict(), 'model.ckpt')
  • 使用torch.save保存模型的状态字典到文件,以便之后可以重新加载和使用模型。

常用函数解析

  1. torch.device(device_str)

    • 格式:torch.device(device_str)
    • 参数:device_str —— 指定设备类型和编号(如’cuda:0’)或’cpu’。
    • 意义:确定模型和张量运行的设备。
    • 用法示例:
      device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
      model.to(device)
      
  2. torchvision.datasets.MNIST(...)

    • 格式:torchvision.datasets.MNIST(root, train, transform, download)
    • 参数:指定数据集路径、是否为训练集、预处理变换、是否下载数据集。
    • 意义:加载MNIST数据集。
    • 用法示例:
      train_dataset = torchvision.datasets.MNIST(root='../../data/', train=True, transform=transforms.ToTensor(), download=True)
      
  3. torch.utils.data.DataLoader(...)

    • 格式:torch.utils.data.DataLoader(dataset, batch_size, shuffle)
    • 参数:数据集对象、批次大小、是否打乱数据。
    • 意义:创建数据加载器。
    • 用法示例:
      train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
      
  4. nn.Module

    • 格式:作为基类,不直接实例化。
    • 意义:所有神经网络模块的基类。
    • 用法示例:
      class ConvNet(nn.Module):
          def __init__(self, num_classes=10):
              super(ConvNet, self).__init__()
              # ...
      
  5. nn.Sequential

    • 格式:nn.Sequential(*modules)
    • 参数:一个模块序列。
    • 意义:按顺序应用多个模块。
    • 用法示例:
      self.layer1 = nn.Sequential(
          nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
          nn.BatchNorm2d(16),
          nn.ReLU(),
          nn.MaxPool2d(kernel_size=2, stride=2)
      )
      
  6. nn.Conv2d(...)

    • 格式:nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
    • 参数:输入通道数、输出通道数、卷积核大小、步长、填充。
    • 意义:创建二维卷积层。
    • 用法示例:
      nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2)
      
  7. nn.BatchNorm2d(...)

    • 格式:nn.BatchNorm2d(num_features)
    • 参数:特征数量。
    • 意义:创建二维批量归一化层。
    • 用法示例:
      nn.BatchNorm2d(16)
      
  8. nn.ReLU()

    • 格式:nn.ReLU()
    • 意义:创建ReLU激活层。
    • 用法示例:
      nn.ReLU()
      
  9. nn.MaxPool2d(...)

    • 格式:nn.MaxPool2d(kernel_size, stride)
    • 参数:池化核大小、步长。
    • 意义:创建最大池化层。
    • 用法示例:
      nn.MaxPool2d(kernel_size=2, stride=2)
      
  10. nn.Linear(...)

    • 格式:nn.Linear(in_features, out_features)
    • 参数:输入特征数、输出特征数。
    • 意义:创建全连接层。
    • 用法示例:
      self.fc = nn.Linear(7*7*32, num_classes)
      
  11. nn.CrossEntropyLoss()

    • 格式:nn.CrossEntropyLoss()
    • 意义:创建交叉熵损失层。
    • 用法示例:
      criterion = nn.CrossEntropyLoss()
      
  12. torch.optim.Adam(...)

    • 格式:torch.optim.Adam(params, lr)
    • 参数:模型参数、学习率。
    • 意义:创建Adam优化器。
    • 用法示例:
      optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
      
  13. .to(device)

    • 格式:.to(device)
    • 参数:设备对象。
    • 意义:将模型或张量移动到指定设备。
    • 用法示例:
      images = images.to(device)
      labels = labels.to(device)
      
  14. .reshape(-1, num_features)

    • 格式:reshape(new_shape)
    • 参数:新形状。
    • 意义:重塑张量形状。
    • 用法示例:
      out = out.reshape(out.size(0), -1)
      
  15. torch.max(outputs.data, 1)

    • 格式:torch.max(input, dim)
    • 参数:输入张量、计算最大值的维度。
    • 意义:获取张量在指定维度上的最大值和索引。
    • 用法示例:
      _, predicted = torch.max(outputs.data, 1)
      
  16. torch.no_grad()

    • 格式:torch.no_grad()
    • 意义:上下文管理器,用于推理或测试阶段禁用梯度计算。
    • 用法示例:
      with torch.no_grad():
          # 测试模型的代码
      
  17. .sum().item()

    • 格式:.sum(dim).item()
    • 参数:求和的维度。
    • 意义:计算张量在指定维度的和,并转换为Python数值。
    • 用法示例:
      correct += (predicted == labels).sum().item()
      
  18. model.eval()

    • 格式:model.eval()
    • 意义:将模型设置为评估模式。
    • 用法示例:
      model.eval()
      
  19. torch.save(...)

    • 格式:torch.save(obj, f)
    • 参数:要保存的对象、文件路径。
    • 意义:保存对象到文件。
    • 用法示例:
      torch.save(model.state_dict(), 'model.ckpt')
      

小改进

在运行代码的时候发现可视化十分简陋,于是进行了第一波可视化小改进:读取部分数据集。

数据集部分可视化
def show_images(images):
    plt.figure(figsize=(10,10))
    for i, img in enumerate(images):
        plt.subplot(5, 5, i+1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)
        plt.imshow(img.squeeze().numpy(), cmap='gray')
    plt.show()

# Visualize a few images
dataiter = iter(train_loader)
images, _ = next(dataiter)
show_images(images[:25])  # Visualize 25 images

另外,请注意,由于MNIST数据集中的图像是灰度图,它们的形状是(batch_size, channels, height, width),即(100, 1, 28, 28)。在使用show_images函数之前,我们需要将图像重塑为(batch_size, height, width),即(100, 28, 28)。以下是show_images函数的修正:

def show_images(images):
    plt.figure(figsize=(10,10))
    for i, img in enumerate(images):
        plt.subplot(5, 5, i+1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)
        plt.imshow(img.squeeze().numpy(), cmap='gray')  # 使用 squeeze() 来去除单维度
    plt.show()

确保在使用show_images函数时传递正确形状的图像。如果图像是从DataLoader中获取的,你可能需要使用unsqueeze(0)来添加一个批次维度,然后再调用squeeze()来去除单维度。例如:

images = images.unsqueeze(0)  # 添加一个批次维度
show_images(images[:25])  # 可视化前25张图像

这样就可以正确地显示图像了。
在这里插入图片描述
然后呢,继续执行代码,我们发现训练过程的可视化也是少得可怜,于是我们再加多一点可视化内容。在这里插入图片描述

训练过程可视化

要对训练过程进行更多的可视化,咱们可以记录每个epoch的损失值,并使用Matplotlib绘制损失随epoch变化的图表。以下是如何修改代码来实现这一点:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt

# ...(之前的代码保持不变,包括设备配置、数据加载、模型定义等)

# 训练模型
def train(model, device, train_loader, optimizer, epoch, num_epochs):
    model.train()  # Set the model to training mode
    total_step = len(train_loader)
    losses = []
    
    for i, (images, labels) in enumerate(train_loader):
        images, labels = images.to(device), labels.to(device)

        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        # Collect loss for plotting
        losses.append(loss.item())
        
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

    return losses

# 绘制损失曲线的函数
def plot_losses(epochs, losses):
    plt.figure(figsize=(10, 5))
    for i, loss_per_epoch in enumerate(losses):
        plt.plot(loss_per_epoch, label=f'Epoch {i+1}')
    plt.title('Loss over epochs')
    plt.xlabel('Steps')
    plt.ylabel('Loss')
    plt.legend()
    plt.show()

# 训练过程
losses_over_epochs = []
for epoch in range(num_epochs):
    losses = train(model, device, train_loader, optimizer, epoch, num_epochs)
    losses_over_epochs.append(losses)
    print(f'Epoch {epoch+1}/{num_epochs} - Average Loss: {sum(losses)/len(losses):.4f}')

# 绘制所有epoch的损失曲线
plot_losses(num_epochs, losses_over_epochs)

# ...(测试模型和保存模型的代码保持不变)

在这个修改后的代码中,我们添加了两个新的函数:

  • train:这个函数用于训练模型,并记录每个step的损失。它返回一个包含所有step损失的列表。
  • plot_losses:这个函数接受epoch列表和损失列表作为参数,并绘制出损失随训练step变化的曲线。

在主训练循环中,我们对每个epoch调用train函数,并收集所有epoch的损失,然后使用plot_losses函数绘制损失曲线。

请注意,这里绘制的是每个step的损失,而不是每个epoch的损失均值。如果想要绘制每个epoch的平均损失,可以修改train函数来计算每个epoch的平均损失,并只记录这个值。

咱直接把最终代码贴上:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt

# Device configuration
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# Hyper parameters
num_epochs = 10
num_classes = 10
batch_size = 100
learning_rate = 0.001

# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data/',
                                           train=True, 
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='../../data/',
                                          train=False, 
                                          transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size, 
                                          shuffle=False)

# Convolutional neural network (two convolutional layers)
class ConvNet(nn.Module):
    def __init__(self, num_classes=10):
        super(ConvNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.fc = nn.Linear(7*7*32, num_classes)
        
    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.view(out.size(0), -1)  # Flatten the output
        out = self.fc(out)
        return out

model = ConvNet(num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# Function to visualize images
def show_images(images):
    plt.figure(figsize=(10,10))
    for i, img in enumerate(images):
        plt.subplot(5, 5, i+1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)
        plt.imshow(img.squeeze().numpy(), cmap='gray')
    plt.show()

# Function to train the model
def train(model, device, train_loader, optimizer, epoch, num_epochs):
    model.train()  # Set the model to training mode
    total_step = len(train_loader)
    losses = []
    
    for i, (images, labels) in enumerate(train_loader):
        images, labels = images.to(device), labels.to(device)
        
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
        losses.append(loss.item())
        
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

    return losses

# Function to test the model
def test(model, device, test_loader):
    model.eval()  # Set the model to evaluation mode
    correct = 0
    total = 0
    with torch.no_grad():
        for images, labels in test_loader:
            images = images.to(device)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    return 100 * correct / total

# Function to plot training progress
def plot_progress(epochs, train_losses, test_accuracies):
    plt.figure(figsize=(12, 5))
    plt.subplot(1, 2, 1)
    for i in range(epochs):
        plt.plot(train_losses[i], label=f'Epoch {i+1}')
    plt.title('Training Loss')
    plt.xlabel('Batch')
    plt.ylabel('Loss')
    plt.legend()

    plt.subplot(1, 2, 2)
    plt.plot(test_accuracies, label='Accuracy')
    plt.title('Test Accuracy')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy (%)')
    plt.legend()
    plt.show()

# Visualize a few images
dataiter = iter(train_loader)
images, _ = next(dataiter)
show_images(images[:25])  # Visualize 25 images

# Initialize lists to monitor loss and accuracy
train_losses = []
test_accuracies = []

# Train the model
for epoch in range(num_epochs):
    print(f'Epoch {epoch+1}/{num_epochs}')
    train_loss = train(model, device, train_loader, optimizer, epoch, num_epochs)
    train_losses.append(train_loss)
    test_accuracy = test(model, device, test_loader)
    test_accuracies.append(test_accuracy)

    print(f'Epoch {epoch+1}/{num_epochs} - Average Loss: {sum(train_loss)/len(train_loss):.4f}, Accuracy: {test_accuracy:.2f}%')

# Plot training progress
plot_progress(num_epochs, train_losses, test_accuracies)

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')

经过修改后的训练过程如下图所示:
在这里插入图片描述
在这里插入图片描述
还有很多很多小改进的方向,就留给各位自己尝试啦。

好的,让我们开始。首先,需要准备 MNIST 数据集。可以使用 PyTorch 内置的 torchvision.datasets 库来下载并加载数据集。 ```python import torch import torchvision import torchvision.transforms as transforms transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) ``` 接下来,我们可以定义我们的卷积神经网络模型。这里我们定义了两个卷积层和两个全连接层。 ```python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output net = Net() ``` 接下来,我们可以定义损失函数和优化器。在这个例子中,我们使用交叉熵损失函数和随机梯度下降优化器。 ```python import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) ``` 现在,我们可以开始训练我们的模型。在每个 epoch 中,我们将遍历整个训练集,并使用随机梯度下降进行优化。此外,我们还将计算模型在测试集上的准确率。 ```python for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: # 每 100 个 mini-batches 输出一次损失 print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ``` 训练完成后,我们可以保存模型并测试它在新数据上的性能。 ```python PATH = './cnn.pth' torch.save(net.state_dict(), PATH) net = Net() net.load_state_dict(torch.load(PATH)) # 测试 dataiter = iter(testloader) images, labels = dataiter.next() outputs = net(images) _, predicted = torch.max(outputs, 1) print('Predicted: ', ' '.join('%5s' % predicted[j] for j in range(10))) ``` 恭喜你,现在你已经成功地使用 PyTorch 搭建了一个卷积神经网络,并且能够对手写数字进行识别!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值