一文读懂:DeepSeek之类的大模型为啥都按token收费?tokens究竟是什么?

一、前言

要理解大模型为啥按 token 收费这个问题,我们先得知道到底什么是所谓的 token

“Token”常见释义为“代币;令牌;标记;符号” 。在计算机领域,它常指用于标识或验证的一种机制;在加密货币领域,通常指各种 数字代币;

而在语言学中,“Token”指语言符号,在语料库语言学里,“token”是“形符”,即文本中出现的所有词的个数。

在这里插入图片描述

二、token是什么?

那么在自然语言处理技术领域,简单来说,Token(词元)是文本处理的基本单位,也可以简单理解为模型“理解”文本的最小片段

Token的划分方式取决于具体模型采用的分词策略。

在某些情况下,如果使用了字节对编码(BPE)或者其他形式的子词分词方法,某些汉字或词语可能会被拆分成多个更小的部分,从而占据更多的token。

如腾讯混元大模型1Token ≈1.8个汉字,通义千问1Token ≈ 1个汉字,而英文 1 Token可能对应3-4个字母或一个单词。

自然语言Token化的过程,技术上叫做 Tokenization,即为将输入文本拆分为模型可理解的离散单元,它直接影响模型的计算资源和响应质量。

下面举个例子:

在中文中:一个汉字通常为1个Token,但组合词可能拆分,比方说:“人工智能”可能拆为“人工”+“智能”

而在英文中:一个单词可能对应1个Token,如 “apple”;
也有可能一个单词是多个Token,如“ChatGPT” 拆为: “Chat” + “G” + “PT”

理解了Tokens是啥了以后,我们就好理解为什么按tokens收费是比较合理的原因了。

三、资源消耗

大模型的运行涉及高昂的计算资源消耗(如GPU/TPU算力),而Token数量直接决定了处理文本所需的计算量。按Token计费能更公平地量化不同长度文本的实际成本。

例如,处理1000万Token的长文本所需算力远高于短文本,按量收费可避免“一刀切”定价的弊端。

在这里插入图片描述

四、商业模式

Token计费将输入和输出的文本统一折算为可量化的单位,例如输入1k Token + 输出2k Token = 总费用3k Token,这样一来,用户可直观控制成本。相比之下,传统API按次收费(如每次0.01元)无法区分简单查询与复杂任务的资源差异。

另外,大模型的研发、训练、部署和维护成本极高,如训练成本可达数千万美元。按Tokens收费能分摊这些成本,尤其是推理阶段的实时算力消耗。

五、小结

但Tokens计费并非唯一模式,部分厂商采用混合收费,比方说:订阅制+按Tokens 付费,或针对轻量化模型提供免费额度。

目前Tokens定义缺乏统一标准,不同模型的中文Tokens对应字数不同,可能导致跨平台成本差异。但总体而言,Tokens作为“AI世界的数字货币”,已成为大模型商业化中最主流的计费方式


都看到这里了,各位帅哥/美女,不管有用没用,都帮忙点个赞呗,❤️谢谢~


Author
吴所畏惧 2025.02.28
### DeepSeekToken 的定义和用途 在讨论 DeepSeek 中的 token 之前,理解一般意义上的 token 是必要的。Token 表示自然语言处理 (NLP) 和机器学习领域中的最小单位[^3]。对于不同的模型和技术栈而言,token 的具体实现可能有所不同。 #### DeepSeekToken 的定义 在 DeepSeek 生态系统内,token 主要指代输入文本被分割后的离散单元。这些单元可以是单词、子词或是特定字符序列。这种分词方法有助于提高模型的理解能力和效率。例如,在构建冷启动数据的过程中,DeepSeek 使用特殊的 token 来结构化输出格式,即 `| special_token | <推理过程> | special_token | <摘要>` 这样的形式[^2]。 #### Token 的用途 1. **输入表示** - 对于任何基于 Transformer 架构的语言模型来说,将原始文本转换成 tokens 是第一步操作。这样做不仅简化了计算机对复杂语句的理解难度,还使得不同长度的句子能够统一处理。 2. **优化资源利用** - 在实际应用中,合理控制每条请求所消耗的 token 数量可以帮助降低运行成本并提升整体系统的吞吐率。特别是当涉及到像 DeepSeek-V3 这样具有较高性能需求的应用场景时,有效的 token 管理显得尤为重要[^1]。 3. **增强表达能力** - 特殊类型的 tokens 能够赋予模型更强的表现力。比如上述提到的 cold start 数据集里使用的特殊标记,它们允许开发者自定义输出样式,从而改善用户体验以及结果的质量。 ```python import openai def count_tokens(text): response = openai.Tokenizer.create().encode(text).tokens return len(response) example_text = "这是一个测试字符串" print(f"The number of tokens is {count_tokens(example_text)}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吳所畏惧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值