先验融入深度学习框架案例2-指纹检测

 

指纹具有纹理及方向上的先验,作者通过gabor滤波器组提取指纹的方向信息,并融入模型。

这篇文献还有其他亮点:

Finger 特征点坐标的表示方式

图像经过目前设计神经网络一般都是图像的分别率下降,而通道增加,finger net输入分辨率512*512,最后变为64*64,这时一种方法是将图像上采样到512*512,然后再回归坐标,而作者的做法是在回归目标上做到原始分辨率级别的坐标回归

用三个图来表示最终的预测坐标:

1. 细节点分数图

尺寸为64×64×1,表示在像素点(x,y)处有细节点特征的可能性,每个像素点表示原始图8×8领域,每个像素点的值范围为[0 1];

2. X坐标概率图、Y坐标概率图

X坐标概率图和Y坐标概率图的大小均为64×64×8,细节点分数图定位有可能存在特征点的大致范围(8*8),然后X坐标概率图定位这个范围内的x坐标偏移量,Y坐标概率图定位这个范围内的y坐标偏移量。

xtrue​= xt *8+argmax(X坐标概率图​)(xt,yt)

ytrue​= yt *8+argmax(Y坐标概率图​)( xt,yt) 

     xt,yt为细节点分数图大于阈值t的坐标点,argmax(X坐标概率图​)(xt,yt)表示坐标概率图在当前坐标的通道最大值。

Finger 数值回归的处理方式

       提取的特征点除了需要坐标外还需要方向,作者将方向转换到[0,180],并间隔1离散化,用一个图来表示一个离散值,故最终采用64*64*180来表达特征点的方向。

Finger 监督值label生成方式

label

生成方式

强/弱(准确/不太准确)

指纹特征点(细节点)

手动标记的minutiae lis转换而来的mnt文件。

坐标x 坐标y 方向o

label_mnt_w, label_mnt_h, label_mnt_o, label_mnt_s

指纹方向场

通过指纹采集仪类似设备采集手指质量好的指纹,然后计算其方向场,然后根据指纹的细节来与相同手指的隐指纹匹配,从而得到隐指纹的方向场。

label_ori

指纹方向场

手动标注的指纹特征点的方向数据

label_ori_o

分割掩码

计算特征点凸壳,对凸壳进行扩张平滑。

label_seg

Finger 损失函数

 

 交叉熵损失函数

 

 ROI是感兴趣区域,由掩码确定,这个框架的掩码就是

 

 

 将方向场的连续性领域先验知识融入到loss中

 方向场的连续性是领域的先验知识。作者将其用来约束深度学习推导出来的方向图:

是指纹脊方向的概率,作者将角度离散到[0,180],分别是当前方向0,1,…180的概率。为平均脊方向向量。

J3计算3*3领域平均

 

 

 

 

 

 

 

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值