海天讲座(三)最优传输理论

这篇博客回顾了数学家们在最优传输理论、三维最优传输映射以及Minkowski问题上的探索。作者通过讲述与同行在纽约海滩上的讨论,引出了数学理论中的优美与深邃,特别提到了丘成桐和David Mumford等大师的见解。文章深入浅出地介绍了离散和连续Minkowski问题的解法,以及它们在计算机视觉和几何重建中的应用,展示了数学在计算机科学中的重要性。
摘要由CSDN通过智能技术生成

由于原链接公式看不到,所以转了下,如有侵权,联系删除

2016

农历小年附近,老顾从北京回到纽约。与北京火爆热烈的节日气氛相比,纽约的氛围孤独寂寥,冷漠凄清。与几位访问学者和学生漫步在长岛石溪海滩,气候温润,云蒸霞蔚。冬日的大海,澄澈碧蓝,波涛不兴,极目远眺,胸襟万里。

       最近来自武汉大学的苏教授实现了三维最优传输映射的算法,令人欣慰。他问起了最优传输理论的变分法中精妙的细节。大家一同热烈讨论,以芦苇为笔,沙滩为纸,摹画推演,轻松随性。风轻雨微,潮起潮落,沙滩上纵横交错的几何图形渐渐被海浪抹平。面向大海,大家久久地陷入了沉思。最后,来自北师大的崔教授给出了关键步骤的一个简洁优雅的证明。无论多么艰深晦涩的几何理论,如果她来自自然造化,究其本质都是简单明了的

       我们在海边徘徊徜徉,老顾也和学生们谈到了年轻时求学的经历。二十年前,老顾远渡重洋来到波士顿求学,有幸在哈佛大学和麻省理工聆听数学界和计算机科学界世界级大师的课程,同时也接触了不同的价值观念和学术思潮。丘成桐先生讲授了拓扑学,高屋建瓴,气势恢宏,涵盖了纤维丛理论,惠特尼嵌入定理,莫尔斯理论等等。课程理论现代前沿,抽象艰深。丘先生强调“要做基础的根本性问题,要追求恒久价值,要青史留名。”在计算机系,有一位孔子的后裔,讲授网络课程,课程直白浅显,编程繁重。这位教授强调凶悍的工程能力,以及研究和实际的紧密结合。他也承认如此研究成果至多只有几十年的价值,但是会得到现实社会的丰厚回报。这两种截然不同的价值观念和研究风格令年轻的老顾非常困惑。同时,老顾也无法说服自己在计算机科学方面的研究需要非常艰深的数学理论。于是,老顾向丘先生求教。丘先生说“计算机科学是非常年轻的学科,目前所用的知识比较浅显。但是,计算机的发明是人类历史上的一次革命,潜力巨大,发展迅猛。很快,计算机科学就会应用艰深的理论知识。”在过去的二十年中,丘先生的这句话得到了历史的验证。目前,几乎所有的计算机领域,包括计算几何,计算机视觉,计算机图形学等领域,都毫不犹豫地使用其他领域中最为现代,最为艰深的理论知识了。

       老顾也追随 David Mumford 学习计算机视觉。Mumford是代数几何方面的大家,曾经获得过菲尔兹奖,后来全身心投入到计算机视觉方面的研究。Mumford力图创立一门新兴学科-模式理论。虽然他是代数几何大家,但是在他的模式理论中,他没有过多应用代数几何工具,而是非常推崇概率统计方法在过去的二十年中,统计方法在计算机视觉领域大行其道,特别是统计学习方法。在逝去的2015年,深度学习方法如日中天。与之相反,当时麻省理工的人工智能实验室的Berthold Horn教授依然坚持传统视觉研究手法。Horn教授是计算机视觉开山鼻祖Marr的弟子,Marr认为视觉的基本任务是从二维图形重建维几何,因此他给弟子们的研究方向都是“shape from X”,例如 Shape from Shading, Shape from Contour, Shape from Shadow, Shape from focus 等等。Horn的博士论文专题是“Shape from Shading”,为此他将经典双曲型偏微分方程的特征线法引入到视觉领域,从而奠定了事业的根基。Mumford对于Horn的方法持有保留意见,认为“Shape from Shading”过于理想化,在现实中无法真正重建维几何。几十年后,我们看到从二维图形重建三维几何一直无法达到实用程度。在工程实践中,基于结构光的三维扫描技术将传统视觉中的重建方法彻底取代。Horn曾经提出了“Shape from Curvature”的想法:给定一个封闭的凸曲面,我们求出它的高斯曲率,用高斯映射将高斯曲率定义在单位球面上。我们能否由定义在单位球面上的(原曲面的)高斯曲率来重建原曲面?

       老顾将这一问题向丘先生求教,丘先生高兴得两眼放光,立刻将自己年轻时的力作交给老顾。他告诉老顾这就是经典的Minkowski问题,最终归结为解蒙日-安培方程。下面,我们接着介绍这一问题的几何解法。


我们先考察离散的闵科夫斯基问题(Minkowski problem),然后用离散的解法来逼近连续问题。离散Minkowsky问题相对直观,容易理解。


图2. Minkowski 问题

 Minkowski问题 在n维欧式空间中,给定k个单位向量,k个正实数,满足条件

是否存在一个凸多面体P,它有k个面,每个面 的法向量是,面积为 ?如果存在,这样的凸多面体是否唯一?

       我们首先解释约束条件 的必要性。假设这样的凸多面体存在,我们向一个超平面 投影,凸多面体双重覆盖超平面,平面上每一个点或者不被覆盖,或者被覆盖两次。如果一个点被覆盖两次,则一次被正向覆盖,一次反向覆盖。因此,凸多面体在平面上的总投影面积为0,这意味着:

       因为超平面的法向量n任意,所以我们有

       Minkowski证明了凸多面体的存在性,并且证明这样的凸多面体彼此相差一个平移。Minkowski的证明是基于变分原理。假设每个面的方程为,这里是未知变量,令凸多面体记为。我们记多面体的面的面积为。考察下列的优化问题

 满足下列的限制条件

则多面体的体积是自变量h的可微函数,

     首先,我们证明定义域D为中的凸集。为此,我们需要引进所谓Minkowski和的概念(Minkowski Sum)。 

 图3. Minkowski和的定义。

给定两个多面体 ,它们的Minkowski和定义为:

关于Minkowski和的体积,存在著名的Brunn-Minkowski不等式:

假设 ,对一切 

 同理,我们可以看出对于多面体上的每个面

 由Brunn-Minkowski不等式

 这意味着 ,D为中的凸集。

 多面体的体积是自变量h的可微函数,定义域D为凸紧集,因此体积函数在D中极值点存在。我们来验证极值点必为定义域的内点。体积函数的梯度为

 在定义域边界点处,某个面的面积为0。将梯度向平面投影,投影后的梯度第 个i分量为

 同时可以验证

因此边界点处的梯度指向D的内部。这意味着体积函数的极值点必为定义域D的内点。

用Lagrange乘子法,我们得到在极值点处:

 等价地,我们有

 则凸多面体即为Minkowski问题的解。

 下面我们考察连续情形下的Minkowski问题。

连续情形Minkowski 定理:给定定义在单位球面上的非负函数 ,如果

 则存在凸曲面,令为高斯映射,为曲面上的高斯曲率函数,满足

并且这样的凸曲面彼此相差一个平移。

我们可以用离散情形的Minkowski定理来解连续情形的Minkowski定理。我们将单位球面进行角剖分,在每个角形上定义:

定义

我们有

因此,由离散的Minkowski定理,决定了一个凸多面体。我们不停地细分球面的角剖分,得到一系列凸多面体,其极限就是连续Minkowski问题的解。

图4. Alexandorff问题。

Alexandorff 问题  闵科夫斯基的学生亚历山大(Alexandorff)推广了他的定理,提出了Alexandorff 问题。Minkowski考虑了紧致的闭凸多面体,Alexandorff 考虑无限的开放凸多面体 P。每个面的法向量固定,或者等价地,对应的平面方程

的梯度给定,截距未知。给定平面上的凸区域,每个面的投影和的交集的面积给定为。Alexandorff 证明了如下定理:

 Alexandorff定理:如果指定的面积满足,并且

 则凸多面体P存在,并且这样的凸多面体彼此相差一个垂直平移。

离散最优传输问题 我们在上一讲座中(海天讲座(二)最优传输理论)明确指出,Alexandorff定理给出了离散最优传输问题的解。具体而言,假设我们给定带有测度的离散点集:

 满足

 根据Alexandorff定理,存在凸多面体,每个面的线性方程为。凸多面体是这些支撑平面的上包络,也是分片线性凸函数

 的图(Graph)。凸多面体向平面的投影诱导了的一个胞腔分解,

 这里是凸多面体的面在平面上的投影,

 因此,分片线性凸函数的梯度映射为:

这给出了离散最优传输映射。

存在性证明 由上讨论,我们知道如果我们能够解决Alexandorff问题,我们就能解决离散最优传输问题。遗憾的是,Alexandorff 的证明是基于拓扑方法的存在性证明,其证明无法直接提供算法。最近,我们给出了Alexandorff定理基于变分法的构造性证明,这种证明方法提供了切实可行的计算方法。我们将会在下一讲详细解释。

【本文博客版本】http://blog.sciencenet.cn/blog-2472277-954180.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值