线性代数知识点汇总:行列式和矩阵

本文详细介绍了线性代数的核心概念,包括行列式的定义、性质及其计算方法,以及克莱姆法则在解线性方程组中的应用。同时,探讨了矩阵的运算、逆矩阵、秩和线性变换等关键知识点,为理解线性系统的理论基础提供了清晰的阐述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性代数知识点汇总

知识图谱

线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。变于关量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。

线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数

非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。

行列式非零<=>矩阵可逆<=>方阵满秩<=>向量组满秩(向量个数等于维数)。

image-20211020104354584

第1章 行列式

行列式一定是方的,nxn。

1.1 n阶行列式

1.1.1 定义

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 |A|。

矩阵的行列式,determinate(简称det),是基于矩阵所包含的行列数据计算得到的一个标量。是为求解线性方程组而引入的。

1.1.2 二阶行列式

计算方式:对角线法则

image-20211020105007329

1.1.3 三阶行列式

计算方式:对角线法则

20161127170302327

1.1.4 n阶行列式

排列的逆序数

img

计算n阶行列式

img

img

行列式的3种表示方法

img

1.1.5 特殊的行列式

img

img

1.2 行列式的性质

:行列式中行与列具有同等的地位,行列式的性质凡是对行成立的对列也同样成立.

  • 性质1 行列式与它的转置行列式相等

  • 性质2 互换行列式的两行(列),行列式变号
    推论 如果行列式有两行(列)完全相同,则此行列式为零

  • 性质3 行列式的某一行(列)中所有的元素都乘以同一个倍数k,等于用数k乘以此行列式.
    推论 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面.

  • 性质4 行列式中如果有两行(列)元素成比例,则此行列式为零.

  • 性质5 若行列式的某一列(行)的元素都是两数之和,则等于对应的两个行列式之和.
    img

  • 性质6 把行列式的某一列(行)的各元素乘以同一个倍数然后加到另一列(行)对应的元素上去,行列式不变.

img

1.3 行列式按行(列)展开

对角线法则只适用于二阶与三阶行列式.
本节主要考虑如何用低阶行列式来表示高阶行列式.

img

img

img

img

1.4 行列式的计算

1)利用定义
2)利用性质把行列式化为上三角形行列式,从而算得行列式的值

1.5 克莱姆(Cramer)法则

img

img

 定理中包含着三个结论:
       1)方程组有解;(解的存在性) 
       2)解是唯一的;(解的唯一性)
       3)解可以由公式(2)给出.
  • 定理4 如果线性方程组(1)的系数行列式不等于零,则该线性方程组一定有解,而且解是唯一的 .
  • 定理4′ 如果线性方程组无解或有两个不同的解,则它的系数行列式必为零.

img

齐次线性方程组的相关定理

  • 定理5 如果齐次线性方程组的系数行列式D不等于0,则齐次线性方程组只有零解,没有非零解.
  • 定理5′ 如果齐次线性方程组有非零解,则它的系数行列式必为零.

克莱姆法则说明

  1. 用克莱姆法则解线性方程组的两个条件

    1. 方程个数等于未知量个数;
    2. 系数行列式不等于零.
  2. 克莱姆法则的意义主要在于建立了线性方程组的解和已知的系数以及常数项之间的关系.它主要适用于理论推导.

第2章 矩阵

矩阵不一定是方的。

2.1 矩阵的概念

2.1.1 定义

img

2.1.2 矩阵与行列式的区别

img

2.2 矩阵的运算

2.2.1 加减

img

行列式与矩阵加法的比较:

img

img

2.2.2 数乘

img

img

img

2.2.3 矩阵与矩阵相乘

img

img

img

2.2.4 矩阵的转置

img

img

反对称矩阵(skew symmetric matrix)

img

2.3 几种特殊的矩阵

img

img

2.4 逆矩阵

2.4.1 方阵的行列式

img

2.4.2 伴随矩阵

img

2.4.3 可逆矩阵(称为非奇异矩阵)

img

img

img

img

2.5 分块矩阵

img

img

img

img

img

分块矩阵不仅形式上进行转置,而且每一个子块也进行转置.

img

img

2.6 矩阵的初等变换

2.6.1 初等变换

img

img

img

2.6.2 矩阵之间的等价关系

img

img

img

img

img

2.6.3 初等变换与矩阵乘法的关系

img

img

img

img

2.7 矩阵的秩

img

img

img

img

img

img

2.8 矩阵与线性变换

img

img

img

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值