一、变速直线运动中位置函数和速度函数的关系 二、积分上限函数及其导数 2.1、积分上限函数 2.2、定理1:连续函数f(x)取上限x的定积分,然后求导,还原得到f(x) 2.2.1、证明 导数定义积分的中值定理 2.3、定理2:连续函数的原函数存在 三、牛顿-莱布尼茨公式(微积分基本公式) 3.1、定理3: 微积分基本定理 3.1.1、证明 习题 3.1.2、这个公式揭示了定积分和被积函数的原函数或不定积分的联系 3.1.3、该公式表明:一个连续函数在区间[a, b]上的定积分等于任何一个原函数的增量,给定积分提供一个方便简洁的计算方式