什么是OLAP?

1.1、OLAP 简介

OLAP 是在线分析处理,顾名思义就是OLAP是用于数据分析的;因此,它使我们能够同时分析来自多个数据库系统的信息。换句话说,我们可以说它是一种计算方法,可以让用户轻松提取所需的数据并查询数据,以便从不同的角度进行分析。

  • 它基本上是基于庞大的数据,称为数据仓库;
  • 它从数据仓库中收集所需的数据并执行业务所需的分析,以在业务中做出一些决策,以提高利润、改善销售、改善品牌、改善营销等等。
  • 因此,它在商业智能中用于趋势分析、销售预测、财务报告、计划目的、预算等方面的查询辅助。

1.2、什么是OLAP?

OLAP 是 OLAP(在线分析处理)是许多商业智能 (BI) 应用程序背后的一项强大技术,它可以发现数据、报告查看功能、复杂的分析计算以及预测性“假设”场景、预算计划、预测计划。

例如,用户可以请求分析数据以显示显示 8 月份在孟买上映的所有电影的电子表格,将收入数字与 12 月同一部电影的收入数字进行比较,然后查看其他电影的比较以检查是否在同一时间段内取得更高的成功并成为有利可图的。因此,通过这种分析,将能够决定电影应该在哪里发行以及通过哪些方式获得更多利润,甚至这种数据分析也有助于规划营销策略,例如在哪里进行营销,如何进行,通过哪些方式进行营销。频道做等。

现在我们将看到 OLAP 是如何工作的

  • 首先从多个数据源(如电子表格、视频、XML 等)收集数据并存储在数据仓库中

  • 然后将其清理并组织成数据立方体(data cube)。

之所以成为立方体(Cube),是因为数据按三个维度或者多个维度分类。因此,每个立方体都包含由数据仓库中的多维表导出的按某些维度(例如客户、时间段、地理销售区域和产品)分类的数据。维度可以由成员填充,也可以用于可以采用分层组织的客户姓名、国家和月份等值的维度,并希望对特定值执行分析。OLAP 多维数据集针对跨维度的频繁查询进行了预先汇总,从而提高了关系数据库的查询执行时间。所以像这样,它可以在一段时间内执行不同类型的分析。

与 OLAP 一样,我们使用的另一个术语是 OLTP,即在线事务处理;两者都是在线处理系统

  • OLTP 是事务处理,主要关注事务任务上的任务,
  • 而 OLAP 是一个分析处理系统,主要关注分析和报告,并为他们提供有价值的见解以改进业务。

OLAP 使销售、管理报告、营销、业务流程管理、财务报告、预算和预测等业务报告的工作变得如此轻松。

1.3、OLAP 可以对 多维数据库 执行五种类型:

  • 汇总(Roll-up): 也称为向上钻取或合并,用于汇总操作数据和维度。
  • 下钻(Roll-down): 在数据维度中进行更深入的分析。例如,从“时间段”向下钻取“年”、“月”和“天”等以绘制产品的销售增长图。
  • 切片(Slice): 执行分析以显示一级信息,例如“2019 年的销售额”。
  • 切块(Dice): 进行分析,从多个维度中选取数据进行分析,例如“班加罗尔2019年青苹果的销售额”。
  • 旋转(Pivot): 执行可以通过旋转多维数据集的数据轴来获得新数据视图的分析。

由于 OLAP 给出具有维度的立方体,然后找到维度的交集,例如,在特定时间段内,孟买的所有电影都是有利可图的,并显示结果。每个 OLAP 多维数据集都包含数百个度量,这些度量至少有一个可能,这些度量实际上是从存储在数据仓库的事实表中的信息中派生出来的。

1.4、OLAP 架构

在这里插入图片描述

如图,它通过从多个来源收集数据并存储在数据仓库中开始工作。此外,OLAP 多维数据集是在仓库的清理数据上创建的,用户可以针对这些数据运行查询。

1.4、OLAP(在线分析处理)基本上分为三种类型:

MOLAP(多维 OLAP): MOLAP是一种基于多维数据库索引的 OLAP。

ROLAP (Relational OLAP): ROLAP 是一种对关系数据库存储的数据进行动态多维分析的 OLAP。

HOLAP(混合 OLAP): HOLAP 是 ROLAP 和 MOLAP 的各种集成。用于利用MOLAP开发ROLAP数据容量,超强的处理能力,满足处理需求。

1.5、用途和优势

它可用于数据提取或挖掘、数据分析、报告以发现数据项之间的关系。要从现有关系导入数据,我们可以使用 ODBC(开放数据库连接)来创建 OLAP 多维数据库。趋势分析不需要所有事务数据,因此OLAP数据库不需要像数据仓库那么大。

1.6、缺点

OLAP的一些缺点是必须进行预建模,对IT依赖大,计算能力差,反应慢,缺乏交互分析能力,模型抽象,潜在风险大。

一些分析工具 (OLAP) 是 IBM Cognos、Micro Strategy、Palo OLAP Server、Apache Kylin、Oracle OLAP、icCube、Pentaho BI、JsHypercube 等。

关注我的公众号【宝哥大数据】,更多干货

在这里插入图片描述

OLAP(联机分析处理)。 什么是联机分析处理(OLAP) 联机分析处理 (OLAP) 的概念最早是由关系数据库之父E.F.Codd于1993年提出的,他同时提出了关于OLAP的12条准则。 OLAP的提出引起了很大的反响,OLAP作为一类产品同联机事务处理 (OLTP) 明显区分开来。 当今的数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing)、联机分析处理OLAP (On-Line Analytical Processing)。OLTP是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。 OLAP数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。 下表列出了OLTP与OLAP之间的比较。 OLTPOLAP用户操作人员,低层管理人员决策人员,高级管理人员功能日常操作处理分析决策DB 设计面向应用面向主题数据当前的, 最新的细节的, 二维的分立的历史的, 聚集的, 多维的集成的, 统一的存取读/写数十条记录读上百万条记录工作单位简单的事务复杂的查询用户数上千个上百个DB 大小100MB-GB100GB-TB OLAP是使分析人员、管理人员或执行人员能够从多角度对信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。 OLAP的目标是满足决策支持或者满足在多维环境下特定的查询和报表需求,它的技术核心是"维"这个概念。 “维”是人们观察客观世界的角度,是一种高层次的类型划分。“维”一般包含着层次关系,这种层次关系有时会相当复杂。通过把一个实体的多 项重要的属性定义为多个维(dimension),使用户能对不同维上的数据进行比较。因此OLAP也可以说是多维数据分析工具的集合。 OLAP的基本多维分析操作有钻取(roll up和drill down)、切片(slice)和切块(dice)、以及旋转(pivot)、drill across、drill through等。 ·钻取是改变维的层次,变换分析的粒度。它包括向上钻取(roll up)和向下钻取(drill down)。roll up是在某一维上将低层次的细节数据 概括到高层次的汇总数据,或者减少维数;而drill down则相反,它从汇总数据深入到细节数据进行观察或增加新维。 ·切片和切块是在一部分维上选定值后,关心度量数据在剩余维上的分布。如果剩余的维只有两个,则是切片;如果有三个,则是切块。 ·旋转是变换维的方向,即在表格中重新安排维的放置(例如行列互换)。 OLAP有多种实现方法,根据存储数据的方式不同可以分为ROLAP、MOLAP、HOLAP
03-25
### OLAP 技术介绍 OLAP(Online Analytical Processing,联机分析处理)是一种用于多维数据分析的技术,广泛应用于商业智能(BI)、数据仓库等领域。它通过提供高效的查询能力和灵活的数据视图支持复杂的业务决策过程。 按照存储器中的数据存储格式分类,OLAP 可以分为 ROLAP(关系型 OLAP)、MOLAP(多维 OLAP)和 HOLAP(混合型 OLAP)[^1]。每种类型的 OLAP 都有其特定的优势: - **ROLAP**:基于关系数据库实现,适合大规模数据集的场景,具有良好的扩展性和兼容性。 - **MOLAP**:采用多维数组结构存储数据,查询速度更快,但在高维度情况下可能会面临空间占用较大的问题。 - **HOLAP**:结合了 ROLAP 和 MOLAP 的优点,在性能和存储之间取得平衡。 ### 应用场景 #### 数据分析与报表生成 OLAP 是构建企业级数据分析平台的核心技术之一。通过对历史数据进行多角度、多层次的分析,可以帮助企业管理者制定更科学的战略规划。例如,财务部门可以通过 OLAP 工具快速生成各种复杂报表,从而更好地理解公司的经营状况[^2]。 #### 用户行为分析 在互联网行业中,OLAP 被广泛应用于用户行为分析领域。比如新增用户的统计、活跃度评估、留存率计算等操作都可以借助于该技术完成。特别值得一提的是,利用 bitmap 进行位运算能够极大提升某些特定指标(如唯一访问量UV)的计算效率[^3]。 以下是 Python 中简单模拟 Bitmap 计算的一个例子: ```python def set_bit(value, bit_index): """设置某一位为1""" return value | (1 << bit_index) def clear_bit(value, bit_index): """清除某一位(置0)""" return value & ~(1 << bit_index) def check_bit(value, bit_index): """检测某一位是否被设置过""" return bool(value & (1 << bit_index)) ``` 此代码片段展示了如何使用基本逻辑操作符来操控二进制数值中的单个比特位置;这种技巧非常适合用来跟踪大量独立事件的发生情况而无需额外消耗太多内存资源。 --- ### 总结 综上所述,无论是传统行业的精细化管理还是新兴领域的个性化推荐服务背后都离不开强大的数据分析能力支撑,而这其中不可或缺的就是像 OLAP 这样高效便捷的信息检索手段及其多样化部署形式所带来的便利条件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值