k-means

本文深入探讨了K-means聚类算法的基本原理,包括相似性度量、数据集划分、性能评价指标等核心概念,并详细介绍了算法的实现过程,如初始化聚类中心、计算距离、更新聚类中心等步骤。同时,文章还分析了K-means算法的优缺点,指出了其在处理大数据集时的优势以及在面对非凸面簇和噪声数据时的局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概念介绍

1.1、相似性与据类分析

  人类认识世界,接受信息有超过80%都是源于视觉图像,比如形状、颜色等。人类对于他们的识别都是基于事物间的相似性的,所以研究相似性尤其有价值

   聚类就是要挖掘数据的蕴含的相似性的结构信息。这里相似性是人为主观定义的。

1.2、聚类分析原理

1.2.1、有16张扑克牌,如何将他们分组呢?

在这里插入图片描述
无论选择哪种划分方法,关键在于我们怎样定义并度量“相似性”

1.2.2、相似是主观的, 是否是一类

在这里插入图片描述

1.3、相似度计算方法

  估算不同样本之间的相似性(Similarity Measurement)通常采用的方法就是计算样本间的“距离”(Distance),相似性度量方法有:欧氏距离、余弦夹角、杰卡德相似系数、马氏距离、信息熵等

1.4、数据集的划分

左图有一些数据点,可以划分为3个簇,对应于右图,不同的分组显示不同的颜色。
在这里插入图片描述

怎么教计算机按照人的思维去做同样的事情呢?

1.5、性能评价指标

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
E越小,表示数据点越接近它们的中心,聚类效果越好。误差取了平方,表明更加重视那些远离中心的点。

二、k-means

前面的式子无法用解析的方式求最小,常采用迭代收敛方式。

2.1、K-means算法

输入:含n个样本的数据集,簇数K
输出:k个簇
算法步骤:

  • 1.初始化k个初始聚类中心 (通常随机选择);
  • 2.将每个样本 x i ( i = 1 , . . . n ) x_i (i=1,...n) xi(i=1,...n)分配到与之最近的中心所在的簇;
  • 3.更新聚类中心(各个簇的样本均值);
  • 4.重复2,3直到每个样本点划分结果都不再发生改变

2.2、K-means算法过程示意图

在这里插入图片描述

2.3、K-means算法实例

2.3.1、选择初始聚类中心,计算各个样本到中心距离在这里插入图片描述

在这里插入图片描述

2.3.2、更新聚类中心

通过划分后的簇 获取平均值, 作为新的中心

在这里插入图片描述

2.4、代码实现

2.4.1、伪代码

在这里插入图片描述

2.4.2、代码

2.4.2.1、加载数据
#读数据
#将testSet.txt文本文件中的数据存储到dataMat。它包含许多列表的列表,这种格式方便将很多值封装到矩阵中。
def loadDataSet(fileName):        
    dataMat = []                            #创建列表,存储读取的数据
    fr = open(fileName)
    for line in fr.readlines():             #读每一行
        line1=line.strip();                 #删头尾空白
        curLine = line1.split('\t')         #以\t为分割,返回一个list列表
        # python3.x中map的返回类型是 ‘map’类,它返回的是该对象的内存地址,不能进行计算,需要将map转换为list
        fltLine = list(map(float,curLine))        #str 转成  float
        print(fltLine)
        dataMat.append(fltLine)             #将元素添加到列表尾
    return dataMat

2.4.2.2、初始化聚类中心

可以随机从数据集中选取k个样本作为初始化聚类中心,而这里采用随机生成边界范围内的值的方法。
随机生成的质心必须要在数据集的范围内,这可以根据找每一维的最小值与最大值来完成,在最小值与最大值的范围内,通过随机产生0-1之间的随机数,确保随机点在数据的边界范围内。

#初始化聚类中心
def randCent(dataSet, k):
    n = shape(dataSet)[1]                   #特征维度
    # 创建 k x n 的零矩阵
    centroids = mat(zeros((k,n)))           #创建聚类中心的矩阵 k x n
    for j in range(n):                      #遍历n维特征
        minJ = min(dataSet[:,j])            #第j维特征属性值min   ,1x1矩阵
        rangeJ = float(max(dataSet[:,j]) - minJ)    #区间值max-min,float数值
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))#第j维,每次随机生成k个中心
    return centroids

初始化聚类中心的方法,也可以从测试数据集中,随机抽取k个样本作为初始化的聚类中心。

2.4.2.3、计算距离

k-means算法迭代过程,需要计算距离,常用的计算距离是欧氏距离,也可以使用其他距离函数。

#算距离
def distEclud(vecA, vecB):                  #两个向量间欧式距离
    return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)

2.4.2.4、kMeans() 函数
#k-means算法  (#默认欧式距离,初始中心点方法randCent())  
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent): 
    m = shape(dataSet)[0]   #m个样本
    clusterAssment = mat(zeros((m,2)))  #分配样本到最近的簇:存[簇序号,距离的平方] 
     
        #step1:#初始化聚类中心                                     
    centroids = createCent(dataSet, k)   
    
    clusterChanged = True
    while clusterChanged:   #所有样本分配结果不再改变,迭代终止
        clusterChanged = False
        
        #step2:分配到最近的聚类中心对应的簇中
        for i in range(m):   
            minDist = inf; minIndex = -1  #对于每个样本,定义最小距离
            for j in range(k):  #计算每个样本与k个中心点距离
                distJI = distMeas(centroids[j,:],dataSet[i,:]) 
                if distJI < minDist: 
                    minDist = distJI; minIndex = j  #获取最小距离,及对应的簇序号
            if clusterAssment[i,0] != minIndex: clusterChanged = True 
            clusterAssment[i,:] = minIndex,minDist**2 #分配样本到最近的簇
        print(centroids)
        
        #step3:更新聚类中心
        for cent in range(k):#样本分配结束后,重新计算聚类中心
            #获取该簇所有的样本点
            ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]
            #更新聚类中心:axis=0沿列方向求均值
            centroids[cent,:] = mean(ptsInClust, axis=0) 
    return centroids, clusterAssment
2.4.2.5、 测试
#-*- coding: utf-8 -*- 
from numpy import*
from matplotlib import pyplot as plt

#step1:读取数据并解析为所需格式
from src.main.python.test.kmeans import kMeans

# 数据集
datamat=mat(kMeans.loadDataSet('testSet.txt'))


#step2:聚类
k=4    #用户定义聚类数
for i in range(1):
    mycentroids,clusterAssment=kMeans.kMeans(datamat,k)
    #step3:绘图显示
    kMeans.datashow(datamat,k,mycentroids,clusterAssment)

三、K-means的优缺点

3.1、优点

比较简单,容易实现;
处理大数据集时,保持可伸缩性和高效性;
当结果簇是密集的,聚类效果较好。

3.2、缺点

3.2.1、k由用户给定,不同的k对聚类结果影响很大

如下分别为k=3和k=5的聚类结果。当k=3时,绿色的簇可以划分为两个;当k=5时,红色圆和蓝色圆两个簇应该合并成一个簇。
在这里插入图片描述

5.2.2、对初始化聚类中心的选择敏感;

不同的初始聚类中心,会得到不同的聚类结果,容易陷入局部最优值。如下图,k=4时,结果收敛了,但是陷入局部最小值。
在这里插入图片描述

3.2.3、不适合于发现非凸面形状的簇或者大小差别很大的簇;

不同的初始聚类中心,会得到不同的聚类结果,容易陷入局部最优值。如下图,k=4时,结果收敛了,但是陷入局部最小值。
在这里插入图片描述

3.2.4、对躁声和孤立点数据敏感

四、K-means的改进

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值