【深度学习】最强算法之:图卷积网络(GCN)

1、引言

小屌丝:鱼哥,你在给俺详细讲一讲GCN啊。
小鱼:还讲啊?
小屌丝:啊? 不讲了啊?
小鱼:这不是有一篇吗
小屌丝:哪篇啊?
小鱼:就是那篇啊
小屌丝:我没找到哦
小鱼:… 明明都写了,你还要我咋样?
小屌丝:我要你在详细的介绍一下GCN哦
小鱼:我…
在这里插入图片描述

小屌丝: 晚上撸串哦
小鱼:那这…
在这里插入图片描述

2、图卷积网络

2.1 定义

图卷积网络(GCN)是一种基于图结构的深度学习模型,它通过卷积操作来聚合图中节点的邻居信息,从而学习到节点或整个图的表示。

与传统的卷积神经网络(CNN)不同,GCN处理的是非欧几里得空间的数据,即图数据,其节点之间的连接关系不规则,且节点数量可能各不相同。

2.2 工作原理

GCN的工作原理基于邻居聚合(neighborhood aggregation)或消息传递(message passing)机制,通过这种机制可以更新每个节点的表示。
具体来说,GCN通过以下步骤来学习图中节点的表示:

  • 邻接表示:首先,利用图的邻接矩阵来表示图中节点之间的连接关系。
  • 特征聚合:对于给定的节点,GCN会聚合其邻居节点的特征(包括自己的特征),通常是通过加权平均的方式来实现。
  • 非线性变换:聚合得到的特征接着会通过一个非线性变换(如ReLU函数),并可能通过多层这样的变换来学习更深层次的节点表示。

在这里插入图片描述

2.3 实现方式

GCN的实现通常包括以下几个步骤:

  • 数据预处理:将图数据转换为GCN可以处理的格式,包括节点特征矩阵和邻接矩阵。
  • 定义图卷积层:实现图卷积操作,通常包括线性变换、邻居信息聚合和激活函数等步骤。
  • 堆叠图卷积层:通过堆叠多个图卷积层来构建深层的GCN模型,以捕获图中复杂的依赖关系。
  • 训练和优化:使用合适的损失函数和优化算法来训练GCN模型,使其能够学习到有效的节点或图表示。

2.4 算法公式

算法公式 GCN的算法公式可以表示为: H ( l + 1 ) = σ ( D ( − 1 / 2 ) ∗ A ∗ D ( − 1 / 2 ) ∗ H ( l ) ∗ W ( l ) ) H^(l+1) = σ(D^(-1/2) * A * D^(-1/2) * H^(l) * W^(l)) H(l+1)=σ(D(1/2)AD(1/2)H(l)W(l)) 其中,
- H ( l ) H^(l) H(l)表示第l层的节点特征矩阵,
- A A A表示邻接矩阵,
- D D D表示度矩阵,
- W ( l ) W^(l) W(l)表示第l层的权重矩阵,
- σ σ σ表示激活函数。

2.5 代码示例

# -*- coding:utf-8 -*-
# @Time   : 2024-04-06
# @Author : Carl_DJ

import torch
import torch.nn as nn

class GraphConvolution(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(GraphConvolution, self).__init__()
        self.weight = nn.Parameter(torch.FloatTensor(input_dim, output_dim))  # 初始化权重矩阵
        
    def forward(self, x, adj):
        x = torch.matmul(adj, x)  # 邻接矩阵与节点特征矩阵相乘
        x = torch.matmul(x, self.weight)  # 与权重矩阵相乘
        return x

class GCN(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(GCN, self).__init__()
        self.gc1 = GraphConvolution(input_dim, hidden_dim)  # 第一层图卷积层
        self.gc2 = GraphConvolution(hidden_dim, output_dim)  # 第二层图卷积层
        
    def forward(self, x, adj):
        x = self.gc1(x, adj)  # 第一层图卷积操作
        x = torch.relu(x)  # 激活函数
        x = self.gc2(x, adj)  # 第二层图卷积操作
        return x

# 创建一个GCN模型实例
gcn_model = GCN(input_dim, hidden_dim, output_dim)

# 使用模型进行训练和预测
output = gcn_model(input_data, adjacency_matrix)



解析

  • GraphConvolution类定义了图卷积层的操作,通过权重矩阵与邻接矩阵和节点特征矩阵的乘法运算来实现信息传递和聚合。
  • GCN类则定义了整个GCN模型,包含了两个图卷积层,并通过激活函数ReLU来增加非线性性。
  • 在forward方法中,通过多次调用图卷积层实现了对图结构的深度学习。
    在这里插入图片描述

3、总结

GCN通过有效地在图结构上应用卷积操作,为图结构数据的深度学习提供了强大的工具。

它在多个领域和应用中展示了其效果,是图数据处理不可或缺的一部分。

随着研究的深入和技术的发展,GCN及其变体将继续推动图数据分析和处理的边界。

最后,再唠叨一句,如果想了解GNN合作和GCN与GNN的差异,可以看这两篇哦:

其他机器学习、深度学习领域的算法知识,可以直接参照小鱼的【机器学习&深度学习】专栏哦。

我是小鱼

  • CSDN 博客专家
  • 阿里云 专家博主
  • 51CTO博客专家
  • 企业认证金牌面试官
  • 多个名企认证&特邀讲师等
  • 名企签约职场面试培训、职场规划师
  • 多个国内主流技术社区的认证专家博主
  • 多款主流产品(阿里云等)测评一、二等奖获得者

关注小鱼,学习【机器学习】&【深度学习】领域的知识。

  • 33
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 卷积网络(Graph Convolutional Network,GCN)是一种用于处理结构数据的深度学习模型。其目标是将结构数据的特征表示学习到一个低维的向量空间中,以便于后续的机器学习任务。 GCN的理解: GCN通过将节点的特征与节点的邻居特征进行聚合来学习节点的表示。具体而言,对于每个节点,GCN会计算其邻居节点的特征的加权平均值,并将其与自身的特征进行融合得到新的特征表示。这样的操作可以通过顶点的邻接矩阵和特征矩阵进行计算,并通过神经网络的参数进行学习。 GCN的详细推导: 给定一个结构数据,其表示为一个邻接矩阵A和特征矩阵X。假设有N个节点,每个节点的特征维度为D。那么,我们可以得到一个NxN 的邻接矩阵A,其中A(i, j)表示节点i和节点j之间是否存在边。 GCN的第一层可以表示为:H(1) = f(A, X, W(1)),其中f表示一个对特征进行转换的函数,W(1)为第一层神经网络的权重矩阵。 接下来,我们可以定义第k层GCN的表示为:H(k) = f(A, H(k-1), W(k))。在每一层中,GCN都会根据邻居节点的特征和自身的特征进行更新,并得到一个新的特征表示。 最后,我们可以将GCN的输出表示为:Z = softmax(A, H(K), W(K+1)),其中softmax为一个将特征映射为概率分布的函数。 总结来说,GCN通过将节点的特征与邻居节点的特征进行融合来学习节点的表示,通过多层堆叠的方式逐渐提取更高级别的特征。这使得GCN结构数据上具有良好的表达能力和预测能力,并已经在社交网络、推荐系统等领域取得了很好的效果。 ### 回答2: 卷积网络(Graph Convolutional Network,GCN)是一种用于数据的深度学习方法。它通过在结构上进行信息传播和特征聚合,实现对节点的分类、预测和表示学习等任务。下面将详细介绍GCN的理解和推导。 首先,GCN的核心思想是利用节点的邻居信息对节点进行更新。GCN假设每个节点的特征表示是它自身特征与邻居节点特征的线性组合,然后通过多层的卷积操作,逐步聚合更远的邻居信息以获取更丰富的特征表示。 假设有一个无向G,其中节点数量为N,节点特征维度为D。GCN的第一层卷积操作可以表示为: H^{(1)} = \sigma(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}XW^{(1)}) 其中, - H^{(1)}表示第一层卷积之后的节点特征表示矩阵,维度为N \times F; - \sigma(\cdot)是一个非线性激活函数,如ReLU; - A是邻接矩阵,表示节点之间的连接关系,维度为N \times N; - \tilde{A} = A + I是增加自连接的邻接矩阵,其中I是单位矩阵; - D是度矩阵,对角线元素D_{ii}表示节点i的度,\tilde{D}^{-1/2}是度矩阵的-1/2次方根的逆矩阵; - X是节点特征矩阵,维度为N \times D; - W^{(1)}是第一层权重矩阵,维度为D \times F。 通过多次迭代,每层的卷积操作可以表示为: H^{(l+1)} = \sigma(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}H^{(l)}W^{(l)}) 最终,经过L层的卷积操作后,得到上节点的最终特征表示矩阵H^{(L)}。可以将其用于节点分类任务、链接预测等。 GCN的推导过程可以通过将卷积操作与谱理论联系起来进行。根据谱理论,邻接矩阵A的特征值分解可以得到其正交归一化的特征向量U和对角矩阵Lambda。然后,可以用U和Lambda来近似表示A的多项式核函数。通过将近似补偿引入卷积操作,就可以得到GCN的推导过程。 综上所述,GCN通过在结构上进行信息传播和特征聚合,充分利用节点的邻居信息来实现对节点的分类、预测和表示学习等任务。通过多层的卷积操作,GCN能够融合更远的邻居信息以获取更丰富的特征表示,从而提高了模型的性能。 ### 回答3: 卷积网络(Graph Convolutional Network, GCN)是一种用于数据的深度学习模型。与传统的卷积神经网络(Convolutional Neural Network, CNN)专注于处理网格结构的数据不同,GCN专门设计用于处理结构的数据。 GCN的核心思想是通过迭代地将节点的特征与其邻居节点的特征进行聚合,从而汇聚全局信息并生成节点的新特征表示。这个过程可以表示为以下数学公式: $$ H^{(l+1)} = \sigma\left(D^{-\frac{1}{2}} A D^{-\frac{1}{2}} H^{(l)} W^{(l)}\right) $$ 其中,$H^{(l)}$表示当前层的节点特征矩阵,$A$表示的邻接矩阵(其中$A_{ij}=1$表示节点$i$和$j$之间有边连接,$A_{ij}=0$表示没有边连接),$D$表示度矩阵,$W^{(l)}$是权重矩阵,$\sigma$是激活函数。 上述公式可以通过以下步骤推导得到: 1. 根据邻接矩阵计算度矩阵:$D_{ii}=\sum_j A_{ij}$ 2. 计算归一化的邻接矩阵:$\tilde{A} = D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$ 3. 使用权重矩阵将当前层的节点特征进行线性变换:$X^{(l+1)} = \tilde{A} X^{(l)} W^{(l)}$ 4. 使用激活函数进行非线性变换:$H^{(l+1)} = \sigma(X^{(l+1)})$ 通过多次迭代以上过程,GCN可以逐渐聚合全局信息并生成节点的丰富特征表示。这些特征可以用于节点分类、链接预测等任务。 总之,GCN是一种能够处理结构数据的深度学习模型,它通过迭代地聚合节点的邻居特征来学习节点的新表示。通过推导我们可以看到,GCN的关键是使用归一化的邻接矩阵来捕捉节点之间的相互关系,并通过多层网络来逐渐学习更丰富的节点特征表示。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Carl_奕然

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值