偏微分1.1基本概念

偏微分

1.1基本概念

关于未知函数 u ( x 1 , x 2 , . . . x n ) u(x_1,x_2,...x_n) u(x1,x2,...xn)的*偏微分方程*是一个含 u u u的偏微分商的恒等式,其中最高阶的偏微商的阶数叫该偏微分方程的

偏微分方程就是函数 u u u以及其各偏导数组成的方程。我们设$x\in R , , ,u$以及其偏导数都连续。

二阶偏微分方程的一般形式:
F ( x , u , D u , D x 1 x 2 , . . . D x n x n ) = 0 F(x,u,Du,Dx_1{x_2},...Dx_n{x_n})=0 F(x,u,Du,Dx1x2,...Dxnxn)=0
其中 x = ( x 1 , x 2 , . . . , x n ) , D u = ( u x 1 , u x 2 , . . . , u x n ) = 0 x=(x_1,x_2,...,x_n),Du=(u x_1,u x_2,...,u x_n)=0 x=(x1,x2,...,xn),Du=(ux1,ux2,...,uxn)=0

偏微分方程的一般定义中把它视为x的第n+1个分量及几个未知函数及其偏微商的有限多个偏微分方程构成一个偏微分方程组程组的阶就是出现在方程组中最高阶微商的阶。

如果有一个函数(在方程组的情形是一组函数)在其自变量 x = ( x 1 , x 2 , … , x n ) x=(x_1,x_2,…,x_n) x=x1,x2xn的某变化范围内连续,并且具有方程(方程组)中出现的一切连续偏微商,将它代人方程(方程组)后使其成为恒等式,则称该函数(该组函数)是方程(方程组)的解或古典解.

  • 线性微分方程

    • 线性

      其线性与高等代数相似 A X = b AX=b AX=b

      若可以将方程化为以上形式,即为线性方程。

      其中:

      X X X: u u u以及其的各阶偏导数组成的向量

      A , b A,b A,b:由 x i x_i xi组成的函数,仅包含一个未知数

      u x x + u y y + u = 1 可以化为 ( 1 , 1 , 1 ) ( u x x , u y y , u ) T = 1 u_{xx}+u_{yy}+u=1可以化为(1,1,1)(u_{xx},u_{yy},u)^T=1 uxx+uyy+u=1可以化为(1,1,1)(uxx,uyy,u)T=1

      ( 1 , 1 , 1 ) (1,1,1) (1,1,1)可以看成 x x x的0次方。

      • 齐次

        b = 0 b=0 b=0

      • 非齐次

        b ≠ 0 b\ne 0 b=0

    • 非线性

      • 拟线性

        可化为 B Y = c BY=c BY=c

        其中

        Y : u Y:u Y:u的最高阶偏微分

        B , c : B,c: B,c:除了 u u u的最高阶偏微分

        ( 1 + u y ) u x x − 2 u x u y u x y = u y (1+u_y)u_{xx}-2{u_{x}}{u_y}{u_{x y}}=u_y (1+uy)uxx2uxuyuxy=uy可化为

        ( 1 + u y , 2 u x u y ) ( u x x , u x y ) T = u y (1+u_y,2{u_{x}}{u_y})(u_{xx},u_{xy})^T=u_y (1+uy,2uxuy)(uxx,uxy)T=uy

        • 半线性

          B B B为由 x i x_i xi组成的函数,仅包含一个未知数

          c : c: c:除了 u u u的最高阶偏微分

          x 1 u x x − u x y = u y x_1u_{xx}-{u_{x y}}=u_y x1uxxuxy=uy可化为

          ( x 1 , 1 ) ( u x x , u x y ) T = u y (x_1,1)(u_{xx},u_{xy})^T=u_y (x11)(uxx,uxy)T=uy

      • 完全非线性

        其余都为完全非线性

        ( 1 + u y ) u x x − 2 u x u y u x y 2 = u y (1+u_y)u_{xx}-2{u_{x}}{u_y}{u_{x y}^2}=u_y (1+uy)uxx2uxuyuxy2=uy


以下如无特别说明, 自变量 t t t 表示时间, ( x 1 , x 2 , ⋯   , x n ) \left(x_1, x_2, \cdots, x_n\right) (x1,x2,,xn) 表示 n n n 维空间自变 量. 称微分算子
Δ = ∂ 2 ∂ x 1 2 + ⋯ + ∂ 2 ∂ x n 2 \Delta=\frac{\partial^2}{\partial x_1^2}+\cdots+\frac{\partial^2}{\partial x_n^2} Δ=x122++xn22
为 Laplace (拉普拉斯) 算子, 也称调和算子. 可以说, 它是偏微分方程中最重要 的算子, 这个算子在刚性运动下保持不变, 即在坐标的平移和旋转变换下不变.


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值