Training Loss and Validation Loss in Deep Learning

本文探讨了机器学习中训练损失与验证损失的关系,区分了过拟合、欠拟合和理想情况。关键点在于降低验证损失,同时注意防止过度拟合。讲解了三种情况:训练损失略高于验证损失可能表示欠拟合,显著低于则为过拟合,两者接近且收敛表示模型适中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Answer-1:

Really a fundamental question in machine learning.

If validation loss >> training loss you can call it overfitting.
If validation loss  > training loss you can call it some overfitting.
If validation loss  < training loss you can call it some underfitting.
If validation loss << training loss you can call it underfitting.

Your aim is to make the validation loss as low as possible. Some overfitting is nearly always a good thing. All that matters in the end is: is the validation loss as low as you can get it.

This often occurs when the training loss is quite a bit lower.

Also check how to prevent overfitting.

-----------------------------------------------------------------------------------------------------------------

Answer-2:

In machine learning and deep learning there are basically three cases

1) Underfitting

This is the only case where loss > validation_loss, but only slightly, if loss is far higher than validation_loss, please post your code and data so that we can have a look at

2) Overfitting

loss << validation_loss

This means that your model is fitting very nicely the training data but not at all the validation data, in other words it's not generalizing correctly to unseen data

3) Perfect fitting

loss == validation_loss

If both values end up to be roughly the same and also if the values are converging (plot the loss over time) then chances are very high that you are doing it right

备注:以上答案均来自链接:Training Loss and Validation Loss in Deep Learning - Stack Overflowhttps://stackoverflow.com/questions/48226086/training-loss-and-validation-loss-in-deep-learning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值