Training Loss and Validation Loss in Deep Learning

本文探讨了机器学习中训练损失与验证损失的关系,区分了过拟合、欠拟合和理想情况。关键点在于降低验证损失,同时注意防止过度拟合。讲解了三种情况:训练损失略高于验证损失可能表示欠拟合,显著低于则为过拟合,两者接近且收敛表示模型适中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Answer-1:

Really a fundamental question in machine learning.

If validation loss >> training loss you can call it overfitting.
If validation loss  > training loss you can call it some overfitting.
If validation loss  < training loss you can call it some underfitting.
If validation loss << training loss you can call it underfitting.

Your aim is to make the validation loss as low as possible. Some overfitting is nearly always a good thing. All that matters in the end is: is the validation loss as low as you can get it.

This often occurs when the training loss is quite a bit lower.

Also check how to prevent overfitting.

-----------------------------------------------------------------------------------------------------------------

Answer-2:

In machine learning and deep learning there are basically three cases

1) Underfitting

This is the only case where loss > validation_loss, but only slightly, if loss is far higher than validation_loss, please post your code and data so that we can have a look at

2) Overfitting

loss << validation_loss

This means that your model is fitting very nicely the training data but not at all the validation data, in other words it's not generalizing correctly to unseen data

3) Perfect fitting

loss == validation_loss

If both values end up to be roughly the same and also if the values are converging (plot the loss over time) then chances are very high that you are doing it right

备注:以上答案均来自链接:Training Loss and Validation Loss in Deep Learning - Stack Overflowhttps://stackoverflow.com/questions/48226086/training-loss-and-validation-loss-in-deep-learning

Abstract: Gas metal arc welding (GMAW) is a widely used welding process in various industries. One of the significant challenges in GMAW is to achieve optimal welding parameters and minimize defects such as spatter and porosity. In this paper, we propose a deep-learning-based approach to analyze metal-transfer images in GMAW processes. Our approach can automatically detect and classify the different types of metal-transfer modes and provide insights for process optimization. Introduction: Gas metal arc welding (GMAW) is a welding process that uses a consumable electrode and an external shielding gas to protect the weld pool from atmospheric contamination. During the GMAW process, the metal transfer mode affects the weld quality and productivity. Three types of metal transfer modes are commonly observed in GMAW: short-circuiting transfer (SCT), globular transfer (GT), and spray transfer (ST). The selection of the transfer mode depends on the welding parameters, such as the welding current, voltage, and wire feed speed. The metal transfer mode can be observed using high-speed imaging techniques, which capture the dynamic behavior of the molten metal during welding. The interpretation of these images requires expertise and is time-consuming. To address these issues, we propose a deep-learning-based approach to analyze metal-transfer images in GMAW processes. Methodology: We collected a dataset of metal-transfer images using a high-speed camera during the GMAW process. The images were captured at a rate of 5000 frames per second, and the dataset includes 1000 images for each transfer mode. We split the dataset into training, validation, and testing sets, with a ratio of 70:15:15. We trained a convolutional neural network (CNN) to classify the metal-transfer mode from the images. We used the ResNet50 architecture with transfer learning, which is a widely used and effective approach for image classification tasks. The model was trained using the categorical cross-entropy loss function and the Adam optimizer. Results: We achieved an accuracy of 96.7% on the testing set using our deep-learning-based approach. Our approach can accurately detect and classify the different types of metal-transfer modes in GMAW processes. Furthermore, we used the Grad-CAM technique to visualize the important regions of the images that contributed to the classification decision. Conclusion: In this paper, we proposed a deep-learning-based approach to analyze metal-transfer images in GMAW processes. Our approach can automatically detect and classify the different types of metal-transfer modes with high accuracy. The proposed approach can provide insights for process optimization and reduce the need for human expertise in interpreting high-speed images. Future work includes investigating the use of our approach in real-time monitoring of the GMAW process and exploring the application of our approach in other welding processes.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值