分片线性插值函数最大误差(无穷范数误差)收敛阶的详细推导

分片线性插值函数最大误差(无穷范数误差)收敛阶的详细推导

假设我们要在区间 [ x i , x i + 1 ] [x_i, x_{i+1}] [xi,xi+1]上进行分片线性插值。我们用 L ( x ) L(x) L(x) 表示这个区间上的分片线性插值函数,用 (f(x)) 表示实际的函数。

泰勒展开与误差估计

为了估计误差,我们可以对 f ( x ) f(x) f(x)进行泰勒展开。在 x i x_i xi 处展开得到:
f ( x ) = f ( x i ) + f ′ ( x i ) ( x − x i ) + f ′ ′ ( ξ ) 2 ( x − x i ) 2 f(x) = f(x_i) + f'(x_i)(x - x_i) + \frac{f''(\xi)}{2}(x - x_i)^2 f(x)=f(xi)+f(xi)(xxi)+2f′′(ξ)(xxi)2
其中, ξ \xi ξ x x x x i x_i xi 之间的某个点。

分片线性插值函数 L ( x ) L(x) L(x) 在区间 [ x i , x i + 1 ] [x_i, x_{i+1}] [xi,xi+1] 上的表达式为:
L ( x ) = x i + 1 − x x i + 1 − x i f ( x i ) + x − x i x i + 1 − x i f ( x i + 1 ) L(x) = \frac{x_{i+1} - x}{x_{i+1} - x_i} f(x_i) + \frac{x - x_i}{x_{i+1} - x_i} f(x_{i+1}) L(x)=xi+1xixi+1xf(xi)+xi+1xixxif(xi+1)

因为 L ( x ) L(x) L(x) 是线性的,可以将其表示为:
L ( x ) = f ( x i ) + f ( x i + 1 ) − f ( x i ) x i + 1 − x i ( x − x i ) L(x) = f(x_i) + \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} (x - x_i) L(x)=f(xi)+xi+1xif(xi+1)f(xi)(xxi)

误差表达式

误差 E ( x ) E(x) E(x) 是实际函数值 f ( x ) f(x) f(x)和插值函数值 L ( x ) L(x) L(x) 之间的差异:
E ( x ) = f ( x ) − L ( x ) E(x) = f(x) - L(x) E(x)=f(x)L(x)

我们将泰勒展开的表达式与线性插值函数进行比较,得到:
E ( x ) = f ( x i ) + f ′ ( x i ) ( x − x i ) + f ′ ′ ( ξ ) 2 ( x − x i ) 2 − [ f ( x i ) + f ( x i + 1 ) − f ( x i ) x i + 1 − x i ( x − x i ) ] E(x) = f(x_i) + f'(x_i)(x - x_i) + \frac{f''(\xi)}{2}(x - x_i)^2 - \left[ f(x_i) + \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} (x - x_i) \right] E(x)=f(xi)+f(xi)(xxi)+2f′′(ξ)(xxi)2[f(xi)+xi+1xif(xi+1)f(xi)(xxi)]

简化得:
E ( x ) = f ′ ( x i ) ( x − x i ) + f ′ ′ ( ξ ) 2 ( x − x i ) 2 − f ( x i + 1 ) − f ( x i ) x i + 1 − x i ( x − x i ) E(x) = f'(x_i)(x - x_i) + \frac{f''(\xi)}{2}(x - x_i)^2 - \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} (x - x_i) E(x)=f(xi)(xxi)+2f′′(ξ)(xxi)2xi+1xif(xi+1)f(xi)(xxi)

由于 f ( x i + 1 ) f(x_{i+1}) f(xi+1)可以用泰勒展开表示为:
f ( x i + 1 ) = f ( x i ) + f ′ ( x i ) ( x i + 1 − x i ) + f ′ ′ ( ξ ′ ) 2 ( x i + 1 − x i ) 2 f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(\xi')}{2}(x_{i+1} - x_i)^2 f(xi+1)=f(xi)+f(xi)(xi+1xi)+2f′′(ξ)(xi+1xi)2
其中 ξ ′ \xi' ξ [ x i , x i + 1 ] [x_i, x_{i+1}] [xi,xi+1]上的某个点。

因此, f ( x i + 1 ) − f ( x i ) x i + 1 − x i \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} xi+1xif(xi+1)f(xi) 可以近似表示为:
f ( x i + 1 ) − f ( x i ) x i + 1 − x i ≈ f ′ ( x i ) + f ′ ′ ( ξ ′ ) 2 ( x i + 1 − x i ) \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} \approx f'(x_i) + \frac{f''(\xi')}{2}(x_{i+1} - x_i) xi+1xif(xi+1)f(xi)f(xi)+2f′′(ξ)(xi+1xi)

代入得到:
E ( x ) = f ′ ( x i ) ( x − x i ) + f ′ ′ ( ξ ) 2 ( x − x i ) 2 − [ f ′ ( x i ) + f ′ ′ ( ξ ′ ) 2 ( x i + 1 − x i ) ] ( x − x i ) E(x) = f'(x_i)(x - x_i) + \frac{f''(\xi)}{2}(x - x_i)^2 - \left[f'(x_i) + \frac{f''(\xi')}{2}(x_{i+1} - x_i)\right](x - x_i) E(x)=f(xi)(xxi)+2f′′(ξ)(xxi)2[f(xi)+2f′′(ξ)(xi+1xi)](xxi)

继续简化,我们得到:
E ( x ) = f ′ ′ ( ξ ) 2 ( x − x i ) 2 − f ′ ′ ( ξ ′ ) 2 ( x i + 1 − x i ) ( x − x i ) E(x) = \frac{f''(\xi)}{2}(x - x_i)^2 - \frac{f''(\xi')}{2}(x_{i+1} - x_i)(x - x_i) E(x)=2f′′(ξ)(xxi)22f′′(ξ)(xi+1xi)(xxi)

将误差整理成一个更简洁的形式:
E ( x ) ≈ f ′ ′ ( ξ ) 2 ( x − x i ) ( x − x i + 1 ) E(x) \approx \frac{f''(\xi)}{2} (x - x_i)(x - x_{i+1}) E(x)2f′′(ξ)(xxi)(xxi+1)

最大误差的估计

我们可以进一步分析这个误差表达式来找到最大误差的位置。在区间 [ x i , x i + 1 ] [x_i, x_{i+1}] [xi,xi+1] 上, ( x − x i ) ( x − x i + 1 ) (x - x_i)(x - x_{i+1}) (xxi)(xxi+1) x = x i + x i + 1 2 x = \frac{x_i + x_{i+1}}{2} x=2xi+xi+1 处取最大值。对于 [ x i , x i + 1 ] [x_i, x_{i+1}] [xi,xi+1] 上的中点 x = x i + x i + 1 2 x = \frac{x_i + x_{i+1}}{2} x=2xi+xi+1 ,我们可以计算误差:
E ( x i + x i + 1 2 ) = f ′ ′ ( ξ ) 2 ( x i + x i + 1 2 − x i ) ( x i + x i + 1 2 − x i + 1 ) E\left( \frac{x_i + x_{i+1}}{2} \right) = \frac{f''(\xi)}{2} \left( \frac{x_i + x_{i+1}}{2} - x_i \right) \left( \frac{x_i + x_{i+1}}{2} - x_{i+1} \right) E(2xi+xi+1)=2f′′(ξ)(2xi+xi+1xi)(2xi+xi+1xi+1)

简化得:
E ( x i + x i + 1 2 ) = f ′ ′ ( ξ ) 2 ( x i + 1 − x i 2 ) ( − x i + 1 − x i 2 ) E\left( \frac{x_i + x_{i+1}}{2} \right) = \frac{f''(\xi)}{2} \left( \frac{x_{i+1} - x_i}{2} \right) \left( -\frac{x_{i+1} - x_i}{2} \right) E(2xi+xi+1)=2f′′(ξ)(2xi+1xi)(2xi+1xi)

E ( x i + x i + 1 2 ) = − f ′ ′ ( ξ ) 2 ( x i + 1 − x i 2 ) 2 E\left( \frac{x_i + x_{i+1}}{2} \right) = -\frac{f''(\xi)}{2} \left( \frac{x_{i+1} - x_i}{2} \right)^2 E(2xi+xi+1)=2f′′(ξ)(2xi+1xi)2

E ( x i + x i + 1 2 ) = − f ′ ′ ( ξ ) 2 ⋅ ( x i + 1 − x i ) 2 4 E\left( \frac{x_i + x_{i+1}}{2} \right) = -\frac{f''(\xi)}{2} \cdot \frac{(x_{i+1} - x_i)^2}{4} E(2xi+xi+1)=2f′′(ξ)4(xi+1xi)2

E ( x i + x i + 1 2 ) = − f ′ ′ ( ξ ) 8 ( x i + 1 − x i ) 2 E\left( \frac{x_i + x_{i+1}}{2} \right) = -\frac{f''(\xi)}{8} (x_{i+1} - x_i)^2 E(2xi+xi+1)=8f′′(ξ)(xi+1xi)2

总结

我们可以看到,在区间 [ x i , x i + 1 ] [x_i, x_{i+1}] [xi,xi+1] 上,分片线性插值的最大误差为:
∣ E ( x ) ∣ max ≈ ∣ f ′ ′ ( ξ ) ∣ 8 ( x i + 1 − x i ) 2 |E(x)|_{\text{max}} \approx \frac{|f''(\xi)|}{8} (x_{i+1} - x_i)^2 E(x)max8f′′(ξ)(xi+1xi)2

这个结果表明分片线性插值的最大误差与区间长度的平方成正比,并且与函数的二阶导数成正比。这解释了为什么误差随区间变短而减少,因为误差是 Δ x 2 \Delta x^2 Δx2 的量级。

h = x i + 1 − x i h=x_{i+1} - x_i h=xi+1xi,也就是说分片线性插值的最大误差是二阶收敛 O ( h 2 ) O(h^2) O(h2), 。

图示与直观理解

通过图示可以更直观地理解这个误差。设想一个光滑的函数 f ( x ) f(x) f(x) 和它的分片线性插值函数 L ( x ) L(x) L(x)。在每个区间的中点处,插值函数和实际函数之间的距离(误差)最大。通过减少区间长度(增加插值点),可以降低误差。

示例代码

我们可以用代码来验证这个结论,并通过图形展示误差的变化。

import numpy as np
import matplotlib.pyplot as plt

# 定义函数和插值点
x = np.linspace(0, np.pi, 100)
f = np.sin(x)
xi = np.linspace(0, np.pi, 10)
fi = np.sin(xi)

# 分片线性插值
L = np.interp(x, xi, fi)

# 计算误差
error = f - L

# 绘制函数和插值结果
plt.figure(figsize=(10, 5))
plt.plot(x, f, label='原函数 $\sin(x)$')
plt.plot(x, L, label='分片线性插值', linestyle='--')
plt.scatter(xi, fi, color='red', label='插值点')
plt.legend()
plt.title('分片线性插值和 $\sin(x)$ 的比较')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid(True)
plt.show()

# 绘制误差
plt.figure(figsize=(10, 5))
plt.plot(x, error, label='误差 $E(x)$')
plt.title('分片线性插值的误差')
plt.xlabel('x')
plt.ylabel('误差 $E(x)$')
plt.legend()
plt.grid(True)
plt.show()

# 输出最大误差
max_error = np.max(np.abs(error))
print(f'最大误差: {max_error}')

这个代码展示了 sin ⁡ ( x ) \sin(x) sin(x) 的分片线性插值,并计算和绘制误差曲线。通过观察误差曲线,可以验证在中点附近误差最大,并且误差随着区间长度的平方减少。

  • 23
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值