昇思25天学习打卡营第7天|模型训练

打卡

SGD优化器训练结果如下

同参数设置下,Adam优化器训练结果如下

同参数设置下,RMSProp 优化器训练结果如下

 同参数设置下,AdamWeightDecay 优化器训练结果如下

目录

打卡

SGD优化器训练结果如下

同参数设置下,Adam优化器训练结果如下

同参数设置下,RMSProp 优化器训练结果如下

 同参数设置下,AdamWeightDecay 优化器训练结果如下

 类、方法说明

模型训练

概念说明

超参数

学习率

损失函数

例子

优化器

 例子

训练代码


 类、方法说明

模型训练

一般分为四个步骤 :

  1. 构建数据集。
  2. 定义神经网络模型。
  3. 定义超参、损失函数及优化器。
  4. 输入数据集进行训练与评估。

概念说明

超参数

超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。

目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:

$w_{t+1}=w_{t}-\eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l\left(x, w_{t}\right) $ 其中,公式中,𝑛 是批量大小(batch size),η 是学习率(learning rate)。另外,$w_{t}$ 为训练轮次t 中的权重参数, $ \nabla l $ 为损失函数的导数。除了梯度本身,这两个因子直接决定了模型的权重更新,从优化本身来看,它们是影响模型性能收敛最重要的参数。一般会定义以下超参用于训练:

  • 训练轮次(epoch):训练时遍历数据集的次数。

  • 批次大小(batch size):数据集进行分批读取训练,设定每个批次数据的大小。batch size过小,花费时间多,同时梯度震荡严重,不利于收敛batch size过大 ,不同batch的梯度方向没有任何变化,容易陷入局部极小值,因此需要选择合适的batch size,可以有效提高模型精度、全局收敛。

  • 学习率(learning rate):如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度

学习率

损失函数

训练模型时,随机初始化的神经网络模型开始时会预测出错误的结果。损失函数会评估预测结果与目标值的相异程度,模型训练的目标即为降低损失函数求得的误差。

常见的损失函数包括用于回归任务的 nn.MSELoss(均方误差)和用于分类的 nn.NLLLoss(负对数似然)等。 nn.CrossEntropyLoss 结合了 nn.LogSoftmax 和 nn.NLLLoss,可以对logits 进行归一化并计算预测误差。

例子

优化器

模型优化(Optimization)是在每个训练步骤中调整模型参数以减少模型误差的过程。MindSpore提供多种优化算法的实现,称之为优化器(Optimizer)。优化器内部定义了模型的参数优化过程(即梯度如何更新至模型参数),所有优化逻辑都封装在优化器对象中。例如,SGD(Stochastic Gradient Descent)优化器。

我们通过 model.trainable_params() 方法获得模型的可训练参数,并传入学习率超参来初始化优化器。

在训练过程中,通过微分函数可计算获得参数对应的梯度,将其传入优化器中即可实现参数优化,具体形态如下:

grads = grad_fn(inputs)

optimizer(grads)

不同优化器的训练结果见本文上面的打卡图片对比。

 例子

1)随机梯度下降的实现:mindspore.nn.SGD( params, learning_rate=0.1, momentum=0.0, dampening=0.0, weight_decay=0.0, nesterov=False, loss_scale=1.0 )

2)Adaptive Moment Estimation (Adam)算法的实现:mindspore.nn.Adam( params, learning_rate=0.001, beta1=0.9, beta2=0.999, eps=1e-08, use_locking=False, use_nesterov=False, weight_decay=0.0, loss_scale=1.0, use_amsgrad=False, **kwargs)

3)权重衰减Adam算法的实现:mindspore.nn.AdamWeightDecay( params, learning_rate=0.001, beta1=0.9, beta2=0.999, eps=1e-06, weight_decay=0.0)

4)Momentum算法的实现:mindspore.nn.Momentum( params, learning_rate, momentum, weight_decay=0.0, loss_scale=1.0, use_nesterov=False)

5)均方根传播(RMSProp)算法的实现:mindspore.nn.RMSProp( params, learning_rate=0.1, decay=0.9, momentum=0.0, epsilon=1e-10, use_locking=False, centered=False, loss_scale=1.0, weight_decay=0.0)

训练代码

import mindspore 
from download import download
from mindspore import nn
from mindspore.dataset import MnistDataset, transforms, vision

url = (
    "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/"
    "notebook/datasets/MNIST_Data.zip"
)
path = download(url, "./", kind="zip", replace=True)

epochs = 10
batch_size = 64
learning_rate = 5e-3
loss_fn = nn.CrossEntropyLoss()


class Network(nn.Cell):
    ### 模型网络定义
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28 * 28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10),
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits


def datapipe(path, batch_size):
    ## 数据处理流程
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW(),
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = MnistDataset(path)
    dataset = dataset.map(image_transforms, "image")
    dataset = dataset.map(label_transform, "label")
    dataset = dataset.batch(batch_size)
    return dataset


def forward_fn(data, label):
    # 定义前向传播函数,输出:损失函数 和 模型输出
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits


def train_step(data, label):
    # 定义单步训练函数
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss


def train_loop(model, dataset):
    ## 训练
    ## 返回一个epoch中的batch数。
    size = dataset.get_dataset_size()
    print(f"train_loop size={size}")
    ## 设置当前Cell和所有子Cell的训练模式。
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            ## > 表示右对齐。7 表示字段宽度为7个字符。f 表示将数字格式化为定点数(fixed-point number),即浮点数。
            ## current 是变量名,表示当前的批次号。3 表示字段宽度为3个字符。d 表示将数字格式化为十进制整数。
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")


def test_loop(model, dataset, loss_fn):
    ## 测试
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")


## step 1: load data
train_dataset = datapipe("MNIST_Data/train", batch_size=64)
test_dataset = datapipe("MNIST_Data/test", batch_size=64)

for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break

## step 2: define model and optimizer
model = Network()
optimizer = nn.AdamWeightDecay(model.trainable_params(), learning_rate=learning_rate)
#optimizer = nn.RMSProp(model.trainable_params(), learning_rate=learning_rate)
#optimizer = nn.Adam(model.trainable_params(), learning_rate=learning_rate)
#optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)


# step 3: 获取梯度函数
grad_fn = mindspore.value_and_grad(
    forward_fn,  ## 损失计算函数,前向传播
    None,
    optimizer.parameters,  # 用 Cell 封装神经网络模型时,该 weights 参数设为 mindspore.nn.Cell.trainable_params(recurse=True) 方法从Cell中取出可以求导的参数。
    has_aux=True,  # 设True时,可以自动满足返回辅助数据的同时不影响梯度计算的效果。
)


# step 4: start train and test...
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(model, train_dataset)
    test_loop(model, test_dataset, loss_fn)
print("Done!")

  • 14
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值