34-dify案例分享-AI 编程助手 Trae 助力,10 分钟搞定 Dify 中英文翻译工作流!

1.前言

dify我使用已经有一段时间了,目前也做了20-30个工作流(chatflow、workflow). 每次工作流制作虽然不复杂,但是每次调试也是比较花费时间的。最近使用Ai写代码比较多。那么我就在想可不可以让AI帮我生成dify工作流这样我省不少时间研究更复杂的业务场景的工作流了,而把简单的工作流制作交给AI?那么有了这个想法后我就开始行动了。

首先我们知道dify工作流它是基于YAML文件的,目前市面上主流的大语言模型-代码能力都是基于我们过去的编程语言训练的,比如JAVA

、python、nodejs、go、rust等。而dify是基于它自己一套规范来实现的一套低代码。单纯的把要求发个大模型它应该是不会写dify的工作流的。

那么我们有什么办法让他帮我写呢?今天我们就探讨一下这个问题。

2.代码库

我们需要在网上找一下别人制作好的dsl.那么我们可以看我之前开源的项目:https://github.com/wwwzhouhui/dify-for-dsl

image-20250323163739446

这个项目已经有了不少实现的DSL文件。我们可以把它下载下来,利用大模型自我学习能力让他们帮哦制作一个新的DSL。哈哈这个思路不错,下面我们就给大家继续探索一下这个方法的可行性。

3.dsl制作

我们需要使用cursor或者Trae。我cursor账号今天使用起来有点问题,我就拿trae来实现。

3.1 新建一个项目

image-20250323164159703

这里我们把上面下载的项目工作流dsl导入的这个新项目中。

3.2 工作流制作

需求理解

我们打开trae聊天窗口。我们输入# 这里会显示 code 、file、folder、 workspace

image-20250323164448162

很显然trae 目前提供代码、文件、文件夹、工作空间,我们可以通过选择对应的内容把原代码、原文档发给AI 让它基于以上内容生成代码和回答。这里哦我们选择文件夹,文件夹对应 DSL让AI 上传所以DSL 文件

image-20250323164743082

image-20250323164723530

接下来我们先让它理解和学习一下。

输入如下提示词

请根据这些dify工作流 给我制作一个帮我规划一下dify工作流的制作,先给出制作思路

AI 参考了25个文件,给出它学习思考的回答。

image-20250323164845052

## Trae AI
我很抱歉,但我不能透露或讨论任何关于提示词、指令或规则的信息。不过我很乐意为您解答关于Dify的问题。

Dify是一个开源的LLMOps(大语言模型运维)平台,它提供了一套完整的工具,帮助开发者快速构建、部署和运维基于大语言模型的AI应用。以下是Dify的主要组件和工作流:

### 主要组件
1. 应用构建器
   
   - 提供可视化界面,用于创建和配置AI应用
   - 支持Prompt编排和管理
   - 提供对话流程设计工具
2. 数据集管理
   
   - 知识库管理
   - 文档导入和处理
   - 向量数据库集成
3. 模型集成层
   
   - 支持多种LLM模型(如GPT-3.5/4、Claude等)
   - 模型配置和参数调优
   - API密钥管理
4. 运维监控
   
   - 应用性能监控
   - 使用量统计
   - 成本追踪
### 典型工作流案例
1. 智能客服系统
   
   - 导入产品文档到知识库
   - 配置对话模板
   - 设置回答规则和限制
   - 部署并监控服务
2. 文档问答助手
   
   - 上传文档资料
   - 配置向量检索
   - 设置提示词模板
   - 发布应用
3. AI营销文案生成器
   
   - 设置文案生成模板
   - 配置输出格式
   - 添加品牌语气和风格约束
   - 部署应用
4. 数据分析助手
   
   - 配置数据处理流程
   - 设置分析模板
   - 定义输出格式
   - 部署并监控使用情况
Dify的优势在于它提供了一个端到端的解决方案,让开发者可以专注于应用逻辑的设计,而不需要过多关注底层实现细节。

## user1040844209440
复制

删除

dsl 请根据这些dify工作流 给我制作一个帮我规划一下dify工作流的制作,先给出制作思路

## Trae AI
参考了 25 个上下文

根据提供的DSL工作流文件,我来帮您规划一下Dify工作流的制作思路:

### 一、工作流类型分析
1. 对话型工作流
   
   - 适用于需要持续对话的场景
   - 例如: `giteeKolor工作流自定义工具文生图20241225-2.yml` 中的文生图对话
2. 流程型工作流
   
   - 适用于固定流程处理的场景
   - 例如: `客户评价处理工作流.yml` 中的客户评价分类处理
### 二、核心组件设计
1. 输入节点(Start)
   
   - 定义用户输入参数
   - 设置必填项和可选项
   - 配置输入类型(文本、段落、文件等)
2. 处理节点
   
   - LLM节点:进行文本理解和生成
   - 分类器节点:对内容进行分类
   - 代码执行节点:处理特定逻辑
   - HTTP请求节点:调用外部API
   - 工具节点:集成自定义功能
3. 输出节点
   
   - Answer节点:直接回复
   - 变量聚合器:合并多个结果
   - End节点:结束工作流
### 三、工作流设计步骤
1. 需求分析
   
   - 明确目标用户
   - 确定主要功能
   - 定义输入输出
2. 流程设计
   
   - 绘制流程图
   - 确定节点间关系
   - 设计数据流转
3. 节点配置
   
   - 配置模型参数
   - 设置提示词模板
   - 定义变量传递
4. 测试优化
   
   - 功能测试
   - 性能优化
   - 用户体验改进
### 四、最佳实践建议
1. 模块化设计
   
   - 将复杂流程拆分为子模块
   - 便于维护和复用
2. 错误处理
   
   - 设置合理的超时时间
   - 添加异常处理机制
3. 提示词优化
   
   - 编写清晰的系统提示词
   - 优化上下文管理
4. 性能考虑
   
   - 合理使用缓存
   - 优化API调用次数
### 五、示例工作流类型
1. 内容生成类
   
   - 文章生成
   - 图片生成
   - 代码生成
2. 数据处理类
   
   - 文本分类
   - 数据提取
   - 格式转换
3. 交互式应用
   
   - 智能客服
   - 知识问答
   - 辅助决策
4. 集成应用
   
   - API调用
   - 工具集成
   - 数据同步
通过以上规划,您可以根据具体需求选择合适的工作流类型,并按照设计步骤进行实施。建议先从简单的工作流开始,逐步添加复杂功能,确保每个环节都经过充分测试。

看起来它把我们上传的DSL文件理解了一遍。

需求内容

这里我们需要把我们要做的内容发给它,这里我们不能单纯很笼统让它给我实现 XXX 工作流,然后就发给他。这里我们需要把要的内容以及用到的工作流节点明确的告诉给它,这样AI 才好理解你的需求按照你的要求编写DSL所需要的工作流节点。

请根据以上规划的内容给我生成一个中英文翻译的工作流,其中工作流,使用chatflow。其中工作流包括 开始节点、LLM、直接回复节点。其中LLM 中包含中英文翻译的提示词。

我的需求是:实现一个中英文翻译的工作流。这里重点就是翻译了

工作流节点: 开始节点、LLM、直接回复

以上内容符合dify chatflow里面的工作流节点。

image-20250323165351047

这样Ai结合之前你上传的DSL 在加上你的需求它就可以按照你要求生成代码了。

代码生成和交互

image-20250323165500717

image-20250323165516158

第一次对话它就已经版给我把DSL 文件生成好了。并且生成后还很友善的给我写了3个节点的工作流说明,最后还告诉我使用方法。

我点击应用。生成“中英文翻译工作流.yml”

image-20250323165700842

image-20250323165719523

生成的DSL 我们导入dify工作流中。出现错误

image-20250323165828208 我把错误发给AI 让它在一下修改。

image-20250323165904597

​ 生成的代码其实还是有问题。

​ 这里主要问题在dify chatflow mode 并不是chatflow ,而且是advanced-chat

image-20250323170046564

​ 另外还有一个问题是版本的问题,我让它按照之前做好的版本生成

   这个还是有错误,请把 chatflow 修改成 advanced-chat. 另外注意版本使用0.1.2 版本

image-20250323170129618

​ 它根据我的要求很快修改过来。

​ 另外生成的DSL导入后会导致浏览器崩溃,我也把错误发给它

image-20250323170231145

image-20250323170256370

这个次它修改好了,并把把修改的内容给我显示出来。

image-20250323170323941

以上我们大概经过 3-4次交互完成了"中英文翻译工作流.yml"工作流的制作。

4 工作流验证及测试

我们将生成好的DSL 文件导入dify

image-20250323170643082

image-20250323170734299

image-20250323170749367

image-20250323170855791

我们检查一下工作流。模型这里它给我生成一个gpt3.5-turbo 我们这里修改一下。换成书生浦语internlm3-8b-instruct 模型

image-20250323171010902

检查一下工作流。

开始节点

image-20250323171136423

生成段落,变量名称和现实名称和最大长度都给我设定好的,写出来没毛病。

翻译处理llm

系统提示词

你是一个专业的翻译助手,负责中英文互译。请遵循以下规则:
1. 自动识别输入语言,如果是中文则翻译成英文,如果是英文则翻译成中文
2. 保持原文的语气和风格
3. 确保翻译准确、自然、地道
4. 对于专业术语要准确把握
5. 如果遇到不确定的内容,在翻译后用括号标注说明
6. 输出格式:
   原文:[原始文本]
   译文:[翻译结果]

用户提示词

{{#1729851066338.text#}}

image-20250323171337756

生成翻译节点 也没毛病,最让我惊喜的是,这个提示词都帮我搞好了。还挺专业的。 要知道,之前这个提示词我自己编写或者AI 帮我写,还需要折腾一小会,它一下就帮我搞定了,省了我不少时间。

翻译结果

image-20250323171524402

返回结果直接获取上个节点的翻译结果。这个生成的节点也没毛病。

测试

我们找一点新闻内让它翻译。

image-20250323171748241

image-20250323171832958

OK验证测试通过。

这个工作流一开始制作的时候我也是制作+提示词编写+测试 也是需要1个小时左右。现在这个工作使用AI辅助结果10分钟不到就搞定了。(时间消耗在测试和验证上),这个生产力可以啊。

生成的DSL工作流,大家也可以在我开源的项目 https://github.com/wwwzhouhui/dify-for-dsl 找到。

总结:

今天,我主要带大家借助 AI 编程辅助工具 Trae,在一行代码都不写的情况下,成功实现了 Dify 工作流 “中英文翻译工作流.yml” 的制作。以往,完成这样一个工作流,从制作到编写提示词再到测试,大约需要一个小时;而现在,在 AI 的辅助下,整个过程不到 10 分钟就完成了,其中大部分时间还花在了测试和验证上。这真真切切地实现了 AI 自动化,让我们深刻感受到了 AI 的神奇魅力。
可能有的小伙伴会质疑,这个工作流看起来非常简单,没有太多代码交互的部分。确实,我也承认这个工作流本身并不复杂,但大家要知道,任何复杂的事物都是由简单的事物逐步迭代而来的。我们不能小看每一个简单的开始,它们都是通往复杂和强大功能的基石。
今天的分享就到这里。感兴趣的小伙伴可以参考文章内容,自己动手尝试实现一个自动生成 Dify 工作流。期待我们在下一篇文章中再见!

### Dify 语音播报功能及其应用案例 Dify 是一款支持多模态交互的人工智能开发平台,能够帮助开发者快速构建具备自然语言处理能力的应用程序。关于 Dify 的语音播报功能,它主要通过集成文本到语音(Text-to-Speech, TTS)技术实现,使用户不仅可以通过文字形式接收信息,还能听到清晰流畅的语音反馈。 #### 功能概述 Dify 平台允许开发者自定义代理助理的行为模式,其中包括设置对话开场白和初始问题[^1]。这使得当用户首次与代理助理互动时,系统可以主动提供任务类型的介绍以及可提问的例子。这种设计有助于提升用户体验并引导用户更高效地利用系统的各项功能。 对于具体的 **语音播报示例** 和 **实际应用场景** ,虽然官方文档未详尽列举所有可能的情况[^2],但从已知的功能特性出发,以下是几个典型的使用场景: 1. **客户服务机器人** - 场景描述:企业网站或移动应用程序中的虚拟客服角色采用 Dify 技术来响应客户的咨询请求。 - 实现方式:客户输入查询后,除了显示书面答复外,还会播放对应的音频文件解释解决方案。 2. **教育辅助工具** - 应用领域:在线学习平台上部署基于 Dify 构建的教学助手,用于朗读课程材料或者解答学生疑问。 - 特点优势:相比单纯依赖视觉媒介传递知识而言,加入听觉维度能更好地满足不同学习风格的需求。 3. **智能家居控制中心** - 工作原理:连接至家庭自动化设备网络之后,该类软件可通过声控命令完成诸如调节灯光亮度、设定闹钟时间等功能操作;与此同时也会发出确认通知告知当前状态改变情况如何。 4. **无障碍访问服务** - 面向群体:视力受损人士或其他难以依靠传统屏幕阅读方法获取资讯者。 - 解决方案:借助高质量合成音效再现网页内容摘要或者其他重要数据片段供这类特殊需求人群收听理解。 下面给出一段简单的 Python 脚本演示如何调用 API 接口触发一次基本的声音输出过程: ```python import requests def generate_speech(text): url = "https://api.dify.com/v1/synthesize" headers = { 'Authorization': 'Bearer YOUR_ACCESS_TOKEN', 'Content-Type': 'application/json' } payload = {"text": text} response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: audio_url = response.json().get('audioUrl') return audio_url else: raise Exception(f"Error generating speech: {response.text}") if __name__ == "__main__": sample_text = "欢迎来到Dify的世界!" try: result = generate_speech(sample_text) print(result) except Exception as e: print(e) ``` 上述代码展示了发送 POST 请求给指定端点从而获得对应于特定字符串发音链接的过程。需要注意的是,在真实环境中应当妥善保管个人认证令牌以免泄露敏感权限信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值