机器学习笔记--模型评估之二:准确率、精确率、召回率、F1Score与ROC

准确率(precision)P:

在这里插入图片描述

其中,TP(真正,True Positive)表示真正结果为正例,预测结果也是正例;FP(假正,False Positive)表示真实结果为负例,预测结果却是正例;TN(真负,True Negative)表示真实结果为正例,预测结果却是负例;FN(假负,False Negative)表示真实结果为负例,预测结果也是负例。显然,TP+FP+FN+TN=样本总数

精确率(Precision)P:

P=TP/(TP+FP)

TP(true positive) FP(false positive)

P是代表预测为真且真实为真的数据占预测为真数据的比例。

召回率(recall)R:

R=TP/(TP+FN)

FN(false negitive)

R是代表预测为真且真实为真的数据占真实为真数据的比例

此外:准确率和错误率也是常用评估指标

准确率accuracy

准确率(accuracy)=(TP+TN)/(TP+FP+TN+FN)

错误率 error rate

错误率(error rate)=(FP+FN)/(TP+FP+TN+FN)

精确率与准确率

精确率和准确率容易混淆,精确率是一个二分类指标,而准确率应用于多分类,其计算公式为:

在这里插入图片描述

ROC曲线

Receiver Operating Characteristic Curve

ROC曲线横坐标为假阳性率:False Positive Rate --- FPR

ROC曲线纵坐标为真阳性率:True Positive Rate --- TPR

FPR=FP/N     -----FP为N个负样本中被分类器预测为正样本个数

TPR=TP/P    -----TP是P个正样本中被分类器预测为正样本个数

P是真实正样本数量

N是真实负样本数量

AUC

AUC指的是ROC曲线下的面积大小,该值能够量化的反映基于ROC曲线行列出的模型性能,计算AUC只需要沿着ROC横轴做积分就可以了。一般ROC曲线都处于y=x这条直线的上方(如果不是的话,只要把模型预测的概率反转成1-p就可以得到一个更好的分类器),所以AUC取值一般在0.5~1之间,AUC越大,分类器分类效果越好。

AUC是一个数值,当仅仅看 ROC 曲线分辨不出哪个分类器的效果更好时,用这个数值来判断

在这里插入图片描述

AUC = 1,是完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。
 

总结:ROC是由点(TPR,FPR)组成的曲线,AUC就是ROC的面积。AUC越大越好。

F1 Score

F1分数可以看作是模型精准率和召回率的一种加权平均,它的最大值是1,最小值是0。

F1 Score=2*Precison*Recall/(Precision+Recall)

我们使用调和平均而不是简单的算术平均的原因是:调和平均可以惩罚极端情况。一个具有 1.0 的精度,而召回率为 0 的分类器,这两个指标的算术平均是 0.5,但是 F1 score 会是 0。F1 score 给了精度和召回率相同的权重,它是通用 Fβ指标的一个特殊情况,在 Fβ中,β 可以用来给召回率和精度更多或者更少的权重。
 

参考:https://blog.csdn.net/oTengYue/article/details/89426004

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 机器学习模型评估、选择和验证是指评估模型的性能、从多个模型选择最佳模型,并验证模型的泛化能力。常用的评估方法包括准确率精确率召回率F1 分数、ROC 曲线和 AUC 等。常用的选择方法包括交叉验证、超参数调优、学习曲线分析等。 ### 回答2: 机器学习的目标是通过训练来构建模型,以便能够高效地预测未知数据。但是,模型的准确性不仅取决于所使用的算法,还取决于其它因素,例如数据和参数设置。 模型评估能够帮助我们了解模型性能的好坏。评估算法的过程通常涉及到数据划分、交叉验证和各种评估指标。一般来说,数据划分的过程将数据集拆分成训练集和测试集。用训练集来构建模型并进行参数调整,然后使用测试集来衡量模型的性能。交叉验证是在数据集合上的一个更安全和更可靠的方法,它将原始数据集划分成K个互斥的子集,并使用K-1个子集来训练模型,用剩余的子集来评估模型的性能。 选择正确的模型非常关键,因为模型的性能可以直接影响结果的准确性。选择模型的一个重要因素是如何表示数据集。数据可以使用多种方式表示,而不同的数据表示方式有不同的优劣。选择适当的模型是当然的,但是我们还应该使用技术来优化模型,并防止模型过度拟合或欠拟合。 模型验证是评估模型如何执行任务的最终步骤。验证后,我们可以使用模型进行预测并将其应用于新数据。如果模型的性能不符合要求,可以通过重新评估、更改数据集或改变模型参数来尝试改善。模型验证是机器学习流程非常重要的一部分,可以确保我们的模型效果良好,从而为我们提供可靠的预测结果。 总之,机器学习是一种建立复杂模型的方法,不同的算法、数据表示方式和参数会影响其性能。为了找到最佳模型,我们需要进行模型评估、选择和验证等工作。这些步骤是机器学习流程的关键组成部分,可以帮助我们构建高效且准确的模型,从而应对各种实际应用场景。 ### 回答3: 机器学习是一种人工智能领域的重要技术,它允许计算机从历史数据学习,建立预测模型,并用于未来的数据预测和决策。模型评估、选择与验证是机器学习过程的重要一环,以保证模型的准确性、稳定性和泛化能力。 模型评估的目的是检验模型的表现,并度量其优劣。常用的评估指标包括精确度、召回率F1值等,这些指标可以用于比较不同模型之间的性能表现。评估模型时,通常需要将数据集划分为训练集和测试集,训练集用于训练模型,而测试集用于评估模型性能。评估模型的结果可以指导我们调整模型的参数,提高模型的预测精度。 模型选择是在多个模型选择最合适的模型。常用的模型选择方法包括交叉验证、留一法等。交叉验证是将数据集分成k个子集,每个子集轮流作为测试集进行模型评估,其余部分用于训练模型,最后将测试集误差取平均值作为综合误差来评估模型的性能。 模型验证是对模型的泛化能力的验证。泛化能力是指模型对未知数据的预测精度,即模型是否能够对新数据进行较好的预测。在模型验证,需要将数据集划分为训练集、验证集和测试集。在训练集训练模型,在验证集上调整模型参数,并在测试集上验证模型的泛化能力。常用的验证方法包括留存法、k折交叉验证等。 综上所述,模型评估、选择与验证对于机器学习的预测模型非常重要。这些技术可以保证模型的准确性和稳定性,并提高模型的泛化能力,为数据分析和预测提供可靠依据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值