群论李群学习

1.二维空间的转到描述:只需要一个角度就行,由操作R(\theta )描述,这些操作构成一个无限群,这是一个阿贝尔群,称为SO2群

2.三维空间的转到需要给定一个轴和一个角度,由两个参数描述,SO(3)群:三维幺模实正交矩阵 R(n,\omega ) , 描写绕三维空间   方向转动ω角的变换,按照矩阵的乘积规则,它的集合构成群。(O:实正交;S:幺模)

SO3群是非阿贝尔群。

3.三维空间的转到,可以用3*3矩阵描述,例如绕z轴选择的矩阵

4.对于绕任意n轴的旋转theta,可以先将n轴转到z轴,再绕z轴选择theta,再旋转回来,即

5.3*3的旋转矩阵可以写为指数形式

这要的好处是,可以推导出

w是转到的角度,theta和phi是轴的两个角度,这就是欧拉角描述

 

三维旋转有以下结论

1.三维转动群中转动相同角度的元素互相共轭

2.三维转动群中类用转动角度ω来描写

3.三维旋转矩阵的trace为1+2cos(theta),特征值为1的特征向量为n

还以一个实用的联系变换矩阵与theta和n的公式,叫做

Rodrigues' rotation formula

这个公式能直接能很方便的做计算

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值