1.二维空间的转到描述:只需要一个角度就行,由操作描述,这些操作构成一个无限群,这是一个阿贝尔群,称为SO2群
2.三维空间的转到需要给定一个轴和一个角度,由两个参数描述,SO(3)群:三维幺模实正交矩阵 , 描写绕三维空间 方向转动ω角的变换,按照矩阵的乘积规则,它的集合构成群。(O:实正交;S:幺模)
SO3群是非阿贝尔群。
3.三维空间的转到,可以用3*3矩阵描述,例如绕z轴选择的矩阵
4.对于绕任意n轴的旋转theta,可以先将n轴转到z轴,再绕z轴选择theta,再旋转回来,即
5.3*3的旋转矩阵可以写为指数形式
这要的好处是,可以推导出
w是转到的角度,theta和phi是轴的两个角度,这就是欧拉角描述
三维旋转有以下结论
1.三维转动群中转动相同角度的元素互相共轭
2.三维转动群中类用转动角度ω来描写
3.三维旋转矩阵的trace为1+2cos(theta),特征值为1的特征向量为n
还以一个实用的联系变换矩阵与theta和n的公式,叫做
Rodrigues' rotation formula
这个公式能直接能很方便的做计算